Synthesis and Characterization of 4-Amino-quinazoline Derivatives

He-Ping Yan 1,2, Bo Zhou ${ }^{1,2}$, Gao-Zhang Gou ${ }^{1,2}$, Ju-Cheng Zhang ${ }^{1,2, *}$, Shi-Juan Xu ${ }^{1,2}$ and Wei Liu ${ }^{1,2}$
'College of Science, Honghe University, Mengzi, Yunnan 661199, P.R. China
${ }^{2}$ Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, Honghe University, Mengzi, Yunnan 661199, P.R. China
*Corresponding author: E-mail: yhpyh19511@163.com

Received: 30 April 2014; Accepted: 30 June 2014; Published online: 30 March 2015; \quad AJC-17056

Abstract

Four 4-amino-quinazoline compounds, including 7-[3-(2-methoxyphenoxy)propoxy]- N^{\prime}-(3-chlorophenyl)-6-methoxyquinazolin-4-amine, 7-[3-(4-methoxyphenoxy)propoxy]- N^{\prime}-(3-chlorophenyl)-6-methoxyquinazolin-4-amine, 2-[3-\{4-(3-chlorophenylamino)-6- methoxy-quinazolin-7-yloxy \}propoxy]benzaldehyde, 4-[3-\{4-(3-chlorophenylamino)-6-methoxyquinazolin-7-yloxy\}propoxy]benzaldehyde, were synthesized from N^{\prime}-[5-(3- chloropropoxy)-2-cyano-4-methoxyphen-yl]- N, N-dimethylformamidine by cyclization and etheration. The yields of the compounds IIIa-d were 70.3, 71.0, 45.5 and 50.2%, respectively. Their structures were characterized by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS and elemental analysis.

Keywords: 4-Amino-quinazoline, Quinazoline derivatives.

INTRODUCTION

The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases (RTKs) is recognized as a key mediator of cancer progression ${ }^{1-4}$. The HER tyrosine kinase family consists of four structurally related cellular receptors i.e., the epidermal growth factor receptor (EGFR; HER1), HER2 (ErbB2), HER3 (ErbB3) and HER4 ${ }^{2,5}$. Therefore, dysregulation of the EGFR signaling pathway may contribute to malignant transformation and over expression of HER1 and HER2 is frequently observed in several solid tumors ${ }^{6}$. Accordingly, the EGFR family is a major target of anticancer agents ${ }^{7}$.

Several small-molecule inhibitors of EGFR tyrosine kinases have been developed (Fig. 1). The first class of EGFRtargeting therapeutic agents includes the Her-1 specific inhibitors, 1 (Gefitinib) ${ }^{8}$ and 2 (Erlotinib) ${ }^{9}$, for treatment of non-small cell lung cancer. However, the drug's resistance to Her- 1 specific inhibitors has been clinically observed ${ }^{10}$. The second class includes the Her-1/Her-2 dual inhibitor, 3 (Lapatinib) ${ }^{11}$, for treatment of Her-2-positive breast cancer. The third class includes the EGFR irreversible inhibitors, 4(HKI-272) ${ }^{12,13}$ and 5 (CI-1033) ${ }^{14}$. The chemical structure of these compounds Gefitinib, Erlotinib, Lapatinib, HKI-272 and CI-1033 are shown in Fig. 1.

The halogen atoms in the benzene ring of 4-phenylamino were retained ${ }^{15-18}$, while some heterocyclic fragments were introduced at the end of 6 or 7 position ${ }^{19-24}$ in the synthesis of many 4-phenylamino-quinazolines compounds. The 1,2,4-
triazolo[1,5-a]quinazolines ${ }^{25}$ and thiazolo[2,3-b]quinazolines ${ }^{26}$ were synthesized in recent years. In this paper, 4 compounds (IIIa-IIId) of 4-amino-quinazoline derivatives were synthesized by retaining the parent ring structure of 4(3 '-chlorophenyl)amino-quinazoline and introducing an aryl group at the end of the phenoxypropoxy. There structures were determined by $\mathbb{R},{ }^{1} \mathrm{HNMR},{ }^{13} \mathrm{CNMR}, \mathrm{MS}$ and elemental analysis. Synthetic routes and chemical structures of the compounds IIIa-IIId are shown in Fig. 2.

EXPERIMENTAL

The melting points of synthesized compounds were recorded using X-4 digital microscopy melting point instrument that was uncorrected before use. IR spectra were recorded on Bruker VECTOR22 infrared spectrometer in the range 4000$400 \mathrm{~cm}^{-1}$ in KBr pellets. PMR spectra were recorded on JEOLECX 500 MHz NMR spectrometer with TMS as an internal standard using CDCl_{3} and DMSO- d_{6} as a solvent. The mass spectra and elemental analysis were recorded on Agilent 1100 MSD-Trap-VL mass spectrometer and Elementar Vario-III elemental analyzer, respectively. The purity of the compounds was checked on silica gel-G plates by TLC with layer thickness of 3 mm . All chemicals used were of AR grade (China make) and not purified before use.
(E)- N^{\prime}-[5-(3-chloropropoxy)-2-cyano-4-methoxyphenyl]N, N-dimethylformamidine (I) and 7-(3-chloropropoxy)- N -(3-chlorophenyl)-6-methoxyquinazolin-4-amine (II) were synthesized according to the reported methods ${ }^{17,18}$, respectively.

HKI-272

CI-1033

Fig. 1. Chemical structure of compounds Gefitinib, Erlotinib, Lapatinib, HKI-272 and CI-1033

III $\mathrm{a}: \mathrm{R}=2-\mathrm{OCH}_{3} ; \quad$ III $\mathrm{b}: \mathrm{R}=4-\mathrm{OCH}_{3} ; \quad$ III $\mathrm{c}: \mathrm{R}=2-\mathrm{CHO} ; \quad$ III $\mathrm{d}: \mathrm{R}=4-\mathrm{CHO}$
Fig. 2. Synthetic routes and chemical structures of compounds IIIa-IIId

Synthesis and characterization of compounds IIIa: 0.50 g of N-(3-chlorophenyl)-7-(3-chloropropoxy)-6-methoxy-quinazoline-4-amine, 0.18 g 2-methoxyphenol, 15 mL DMF and $1 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ were reacted at $85^{\circ} \mathrm{C}$ for 10 h . The compound of III was obtained by standing, precipitation and purification with thin-layer chromatographic separation. The compounds of IIIb-IIId were also synthesized by using the similar method. The physical characteristics of the synthesized compounds IIIa-d were given in Table-1.

Compound IIIa: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right) \delta$: 2.24$2.27\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.99(\mathrm{~s}$, $3 \mathrm{H},-\mathrm{OCH}_{3}$), 4.14-4.17 (t, $\left.J=6.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 4.30-4.33$ $\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right), 6.86-6.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HAr}), 6.95-6.97$ (m, 1H, HAr), 7.01-7.03 (m, 1H, HAr), 7.13-7.15 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{HAr}), 7.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HAr}), 7.39-7.42(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, HAr), 7. 90-7.91 (d, J=8.0 Hz, 1H, HAr), 8.01 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HAr}$), 8.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HAr}$), 8.53 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CH}=$), 9.84 (brs, $1 \mathrm{H},-\mathrm{NH}-$); ${ }^{13}$ C NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) $\delta: 29.1,56.0,57.0,65.5,65.7$, 102.9, 108.4, 109.6, 112.8, 114.2, 120.7, 121.3, 121.7, 121.7, 123.1, 130.5, 133.2, 141.8, 147.6, 148.5, 149.6, 149.7, 153.2, 154.1, 156.6; IR (KBr, $\left.v_{\max }, \mathrm{cm}^{-1}\right): 3446,2958,1625,1521$, 1458, 1246, 1222, 1124, 1026, 850, 788, 740.

Compound IIIb: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right) \delta: 2.22-$ 2.25 (m, 2H, - $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), 3.69 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.98 (s , $3 \mathrm{H},-\mathrm{OCH}_{3}$), 4.09-4.12 ($\left.\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 4.30-4.32$ (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}$) $), 6.84-6.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HAr}), 6.90-$ 6.92 (m, 2H, HAr), 7.14-7.16 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}), 7.25$ (s, 1H, HAr), 7.40-7.44 (t, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}), 7.82-7.84$ (m, 2H, HAr), 8.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HAr}), 8.53(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=), 9.56(\mathrm{~s}$,

1H, -NH-); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 125 \mathrm{MHz}\right) \delta: 29.0,55.8$, 56.8, 65.1, 65.7, 102.4, 108.4, 109.5, 115.1, 115.9, 120.6, 121.7, 123.2, 130.6, 133.2, 141.7, 147.6, 149.6, 152.9, 153.1, 153.9, 154.1, 156.5; IR (KBr, $\left.v_{\max }, \mathrm{cm}^{-1}\right): 3442,2918,2846$, 1621, 1506, 1450, 1429, 1234, 1207, 1145, 991, 823.

Compound IIIc: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right) \delta$: 2.34$2.36\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.33-4.35$ $\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 4.38-4.40\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right)$, 7.06-7.09 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}), 7.12-7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1H, HAr), 7.27 (s, 1H, HAr), 7.29 (s, 1H, HAr), 7.38-7.41 $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}), 7.64-7.68(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr})$, 7.69-7.71 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}), 7.90-7.92$ (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{HAr}), 8.03$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HAr}$), 8.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HAr}$), 8.52 ($\mathrm{s}, 1 \mathrm{H}$, - $\mathrm{CH}=$), 9.90 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{NH}-$), 10.45 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CHO}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) $\delta: 28.8,57.1,65.8,66.0,102.8,108.4$, 109.7, 113.9, 120.8, 121.2, 121.7, 123.0, 124.8, 128.1, 130.4, 133.1, 137.0, 141.9, 147.6, 149.5, 153.1, 154.0, 156.7, 161.4, 190.1; IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 3444, 2954, 1653, 1622, 1598, 1427, 1250, 1217, 1138, 846, 761.

Compound IIId: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$) $\delta: 2.29-$ $2.34\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 4.0\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.29-4.32$ $\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 4.32-4.35(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, $-\mathrm{OCH}_{2}$), 7.12-7.14 (d, $\left.J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}\right), 7.17$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HAr}$), 7.19 (s, 1H, HAr), 7.25 (s, 1H, HAr), 7.38-7.41 (t, J=8.3 Hz, 1H, HAr), 7.87 (s, 1H, HAr), 7.89 (s, 1H, HAr), 7.93-7.94 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}), 8.08$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HAr}$), 8.14-8.15 (m, 1H, HAr), 8.52 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CH}=$), 9.88 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{NH}-), 9.96(\mathrm{~s}, 1 \mathrm{H}$, -CHO); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) $\delta: 28.8,57.2,65.4$, 65.6, 103.2, 108.4, 109.7, 115.5, 120.8, 121.8, 123.0, 130.2,

TABLE-1PHYSICAL CHARACTERISTICS OF THE SYNTHESIZED COMPOUNDS IIIa-d									
Comp No.	m.f.	m.p. (${ }^{\circ} \mathrm{C}$)	Yield (\%)	Colour	Found (\%) (calcd.)			Mass (m / z)	
					C	H	N	[M] ${ }^{+}$	[$\mathrm{M}+\mathrm{H}]^{+}$
IIIa	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$	115-116	70.3	Light yellow	64.45(64.44)	5.21(5.19)	9.00(9.02)	465.15	466.3
IIIb	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$	80-81	71.0	Yellow	64.45(64.44)	5.18(5.19)	8.99(9.02)	465.15	466.2
IIIc	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$	201-202	45.5	Yellow	64.71(64.72)	4.80(4.78)	9.05(9.06)	463.13	464.2
IIId	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$	125-127	50.2	Light yellow	64.73(64.72)	4.81(4.78)	9.05(9.06)	463.13	464.2

130.4, 132.4, 133.1, 141.9, 147.5, 149.5, 153.1, 154.0, 156.7, 164.0, 191.9; IR (KBr, $v_{\max }, \mathrm{cm}^{-1}$): 3444, 2960, 1668, 1624 , $1600,1575,1508,1419,1398,1263,1163,615,545$.

RESULTS AND DISCUSSION

The structures of synthesized compounds were identified on the basis the IR, ${ }^{1} \mathrm{HNMR},{ }^{13} \mathrm{CNMR}, \mathrm{MS}$ spectral and elemental analysis data. The spectral values support the expected structures.

In IR spectrum characteristic absorption peak of $\mathrm{N}-\mathrm{H}$ stretching vibration was observed at $3444 \mathrm{~cm}^{-1}$. The absorption peak of $\mathrm{C}=\mathrm{N}$ stretching vibration was found from 1621 to 1625 cm^{-1} and the obvious aromatic ring skeleton vibration peak could be seen from 1400 to $1620 \mathrm{~cm}^{-1}$.

It could be seen from the MS spectra that obvious excimer ionic peaks were appeared in all target compounds.

In ${ }^{1} \mathrm{H}$ NMR spectrum, the peak of $-\mathrm{CH}=\mathrm{N}$ and $\mathrm{N}-\mathrm{H}$ in the compounds IIIa-d appeared at $\mathrm{d}=8.53,9.88-9.90 \mathrm{ppm}$, respectively. The peak of $-\mathrm{CH}=\mathrm{O}$ in the compounds IIIc and IIId appeared at $\mathrm{d}=10.45,9.96 \mathrm{ppm}$, respectively. The m peak of - $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ - in the compounds IIIa-d appeared from 2.22 to 2.34 ppm . The peak of $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ - in the compounds IIIa-d was typical t peak.

In ${ }^{13} \mathrm{C}$ NMR spectrum, the peak of $-\mathrm{CH}=\mathrm{O}$ in the compounds IIIC-d appeared at $\mathrm{d}=190.09,191.88 \mathrm{ppm}$, respectively. The peak of the middle methylene carbon among 3 methylene groups in the compounds IIIa-d was between 28.76-29.06.

Conclusion

In summary, different derivatives of 4-(3^{\prime}-chlorophenyl-amino)-6-methoxy-7- substituted quinazoline were synthesized and characterized by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS and elemental analysis.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support from Honghe University (No. HXY1303).

REFERENCES

N.V. Sergina and M.M. Moasser, Trends Mol. Med., 13, 527 (2007). N.E. Hynes and H.A. Lane, Nat. Rev. Cancer, 5, 341 (2005).
M.M. Moasser, Oncogene, 26, 6577 (2007).
M.M. Moasser, Oncogene, 26, 6469 (2007).
5. A.W. Burgess, H.-S. Cho, C. Eigenbrot, K.M. Ferguson, T.P.J. Garrett, D.J. Leahy, M.A. Lemmon, M.X. Sliwkowski, C.W. Ward and S. Yokoyama, Mol. Cell, 12, 541 (2003).
6. R.S. Herbst and C.J. Langer, Semin. Oncol., 29, 27 (2002).
7. P. Traxler, G. Bold, E. Buchdunger, G. Caravatti, P. Furet, P. Manley, T. O'Reilly, J. Wood and J. Zimmermann, J. Med. Res. Rev., 21, 499 (2001).
8. M. Ranson, L.A. Hammond, D. Ferry, M. Kris, A. Tullo, P.I. Murray, V. Miller, S. Averbuch, J. Ochs, C. Morris, A. Feyereislova, H. Swaisland and E.K. Rowinsky, J. Clin. Oncol., 20, 2240 (2002).
9. F. Ciardiello and G. Tortora, Clin. Cancer Res., 7, 2958 (2001).
10. S. Maheswaran, L.V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C.V. Collura, E. Inserra, S. Diederichs, A.J. Iafrate, D.W. Bell, S. Digumarthy, A. Muzikansky, D. Irimia, J. Settleman, R.G. Tompkins, T.J. Lynch, M. Toner and D.A. Haber, Engl. J. Med., 359, 366 (2008).
11. W. Xia, R.J. Mullin, B.R. Keith, L.-H. Liu, H. Ma, D.W. Rusnak, G. Owens, K.J. Alligood and N.L. Spector, Oncogene, 21, 6255 (2002).
12. (a) H.R. Tsou, E.G. Overbeek-Klumpers, W.A. Hallett, M.F. Reich, M.B. Floyd, B.D. Johnson, R.S. Michalak, R. Nilakantan, C. Discafani, J. Golas, S.K. Rabindran, R. Shen, X. Shi, Y.-F. Wang, J. Upeslacis and A. Wissner, J. Med. Chem., 48, 1107 (2005); (b) S.K. Rabindran, C.M. Discafani, E.C. Rosfjord, M. Baxter, M.B. Floyd, J. Golas, W.A. Hallett, B.D. Johnson, R. Nilakantan, E. Overbeek, M.F. Reich, R. Shen, X. Shi, H.-R. Tsou, Y.-F. Wang and A. Wissner, Cancer Res., 64, 3958 (2004).
13. A. Wissner, E. Overbeek, M.F. Reich, M.B. Floyd, B.D. Johnson, N. Mamuya, E.C. Rosfjord, C. Discafani, R. Davis, X. Shi, S.K. Rabindran, B.C. Gruber, F. Ye, W.A. Hallett, R. Nilakantan, R. Shen, Y.-F. Wang, L.M. Greenberger and H.-R. Tsou, J. Med. Chem., 46, 49 (2003).
14. (a) J.B. Smaill, H.D.H. Showalter, H. Zhou, A.J. Bridges, D.J. McNamara, D.W. Fry, J.M. Nelson, V. Sherwood, P.W. Vincent, B.J. Roberts, W.L. Elliott and W.A. Denny, J. Med. Chem., 44, 429 (2001); (b) S. Campos, O. Hamid, M.V. Seiden, A. Oza, M. Plante, R.K. Potkul, P.F. Lenehan, E.P. Kaldjian, M.L. Varterasian, C. Jordan, C. Charbonneau and H. Hirte, J. Clin. Oncol., 23, 5597 (2005).
15. B.P. Rubin and A. Duensing, Lab. Invest., 86, 981 (2006).
16. X. Cai, H.-X. Zhai, J. Wang, J. Forrester, H. Qu, L. Yin, C.-J. Lai, R. Bao and C. Qian, J. Med. Chem., 53, 2000 (2010).
17. Y. Heping and O. Guiping, Chin. J. Org. Chem., 31, 901 (2011).
18. H.P. Yan, D.S. Huang and J.C. Zhang, Adv. Mater. Res., 634-638, 1215 (2013).
19. L.F. Hennequin, A.P. Thomas, C. Johnstone, E.S.E. Stokes, P.A. Plé, J.-J.M. Lohmann, D.J. Ogilvie, M. Dukes, S.R. Wedge, J.O. Curwen, J. Kendrew and C. Lambert-van der Brempt, J. Med. Chem., 42, 5369 (1999).
20. L.F. Hennequin, E.S.E. Stokes, A.P. Thomas, C. Johnstone, P.A. Plé, D.J. Ogilvie, M. Dukes, S.R. Wedge, J. Kendrew and J.O. Curwen, J. Med. Chem., 45, 1300 (2002).
21. C. Ditchfield, V.L. Johnson and A. Tighe, J. Cell Biol., 161, 267 (2003).
22. P.A. Ple', T.P. Green, L.F. Hennequin, J. Curwen, M. Fennell, J. Allen, C. Lambert-van der Brempt and G. Costello, J. Med. Chem., 47, 871 (2004).
23. L.F. Hennequin, J. Allen, J. Breed, J. Curwen, M. Fennell, T.P. Green, C. Lambert-van der Brempt, R. Morgentin, R.A. Norman, A. Olivier, L. Otterbein, P.A. Plé, N. Warin and G. Costello, J. Med. Chem., 49, 6465 (2006).
24. K.M. Foote, A.A. Mortlock, N.M. Heron, F.H. Jung, G.B. Hill, G. Pasquet, M.C. Brady, S. Green, S.P. Heaton, S. Kearney, N.J. Keen, R. Odedra, S.R. Wedge and R.W. Wilkinson, Bioorg. Med. Chem. Lett., 18, 1904 (2008).
25. R. Al-Salahi, M. Marzouk, A.E. Ashour and I. Alswaidan, Asian J. Chem., 26, 2173 (2014).
26. R. Gupta, R.P. Chaudhary, Asian J. Chem., 24, 2113 (2012).

