

Synthesis and Structure of Cadmium Complex {[Cd(adi)_{0.5}Cl(bimt)]·H₂O}_n

JIAO-LIN ZHANG, BAO-LIAN HAO and HUAI-XIA YANG*

Pharmacy College, Henan College of Traditional Chinese Medicine, Zhengzhou 450008, P.R. China

Accepted: 14 May 2014;

*Corresponding author: E-mail: yanghuaixia886@163.com

Received: 4 March 2014;

Published online: 20 February 2015;

AJC-16873

The cadmium complex {[Cd(adi)_{0.5}Cl(bimt)]·H₂O}_n (H₂adi = adipic acid, bimt = 2-((benzoimidazol-yl)methyl)-1*H*-tetrazole) was prepared by reaction of CdCl₂·2.5H₂O, bimt and H₂adip in methanol/water solution and its structure was determined by single crystal X-ray diffraction analysis. The crystals are triclinic, space group P-1 with a = 8.4863(17) Å, b = 8.5551(17) Å, c = 11.422(2) Å, α = 100.08(3)°, β = 106.33(3)°, γ = 98.37(3)°, V = 766.7(3) Å³, Z = 2, F(000) = 434, Dc = 1.898 g/cm³, μ = 1.623 cm⁻¹, the final R = 0.0252 and wR = 0.0566. A total of 8672 reflections were collected, of which 3584 were independent (Rint = 0.0216).

Keywords: Synthesis, Cadmium Complex, Crystal Structure.

INTRODUCTION

The related reports about Cd(II)-complexes gradually increase on an annual basis since Cd(II) can coordinate simultaneously to both oxygen-containing and nitrogen-containing ligands and the final products can exhibit novel structures and good photoluminescent properties¹. In addition, the employment of mixed ligands of *N*-heterocyclic ligands and polycarboxylates is an effective approach for the construction of novel metal-organic frameworks (MOFs)². To enrich the numbers of Cd(II)-complexes with *N*-heterocycles and polycarboxylic acids, in this article, we select multidentate unsymmetrical *N*-heterocycle 2-((benzoimidazol-y1)methy1)-1*H*-tetrazole (bimt) and flexible aliphatic adipic acid (H₂adi) as ligands to self-assemble with CdCl₂·2.5H₂O and obtain the title complex {[Cd(adi)_{0.5}Cl(bimt)]·H₂O}_n. The preparation and crystal structure of which is reported on herein.

EXPERIMENTAL

Synthesis: A methanolic solution (3 mL) of bimt (0.1 mmol) was added dropwise to an aqueous solution (2 mL) of $CdCl_2 \cdot 2.5H_2O$ (0.1 mmol), then an aqueous solution (3 mL) of H_2adip (0.1 mmol) was added dropwise into the above mixture to give a clear solution at room temperature. Colourless block crystals suitable for X-ray analysis were obtained through slow crystallization in a closed container five weeks later.

Single-crystal structure determination: The crystal of ${[Cd(adi)_{0.5}Cl(bimt)]}\cdot H_2O_n$ with dimensions of 0.19 mm × 0.18 mm × 0.14 mm was mounted on a Rigaku Saturn CCD

area-detector diffractometer with a graphite-monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å) by using an ω scan mode at 293(2) K in the range of $1.91^{\circ} \le \theta \le 27.85^{\circ}$. The crystal belongs to triclinic system with space group P-1 and crystal parameters of a = 8.4863(17) Å, b = 8.5551(17) Å, c = 11.422(2) Å, α = 100.08(3)°, $\beta = 106.33(3)°$, $\gamma = 98.37(3)°$, $V = 766.7(3) Å^3$, $Dc = 1.898 \text{ g/cm}^3$. The absorption coefficient $\mu = 1.623 \text{ mm}^{-1}$ and Z = 2. The structure was solved by direct methods with SHELXS-97³ and refined by the full-matrix least squares method on F² data using SHELXL-97⁴. The empirical absorption corrections were applied to all intensity data. H atom of O-H was initially located in a difference Fourier map and were refined with the restraint Uiso(H) = 1.2 Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with d(N--H) = 0.86 Å and Uiso(H) = 1.2 Ueq(N), d(C--H) = 0.93-0.97 Å and Uiso(H) = 1.2 Ueq(C). The final full-matrix least squares refinement gave R = 0.0252 and wR = 0.0566.

RESULTS AND DISCUSSION

Slow evaporation of the mixture of CdCl₂·2.5H₂O, bimt and H₂adip in methanol/water solution gave colourless crystals suitable for X-ray analysis.

Structure of the title complex: The title complex was confirmed by single crystal X-ray diffraction analysis. Crystallographic and refinement parameters are given in Table-1. The selected bond lengths, bond angles and hydrogen bonds are listed in Tables 2 and 3, respectively. The structure was solved by direct methods. Anisotropic displacement parameters were applied to all nonhydrogen atoms in full-matrix least-

TABLE-1				
CRYSTAL DATA AND STRUCTURAL				
REFINEMENT OF THE TITLE COMPLEX				

Items	Values
Empirical formula	$C_{12}H_{14}N_6O_3CdCl$
Formula weight	438.14
Temperature (K)	293(2)
Crystal system	Triclinic
Space group	P-1
a (Å)	8.4863(17)
b (Å)	8.5551(17)
c (Å)	11.422(2)
α(deg)	100.08(3)
β(deg)	106.33(3)
γ(deg)	98.37(3)
Volume (Å ³)	766.7(3)
Z	2
Calculated density (Mg m ⁻³)	1.898
Absorption coefficient (mm ⁻¹)	1.623
F(000)	434
Crystal sizes (mm)	$0.19 \times 0.18 \times 0.14$
R(int)	0.0216
Data/restraints/parameters	3584 / 0 / 208
Goodness-of-fit on F ²	1.046
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0252, wR_2 = 0.0566$
Final wR ₂ indices (all data)	$R_1 = 0.0276, wR_2 = 0.0580$
$ ightarrow ho_{fin}$ (max/min), e.Å ⁻³	0.359/-0.503

square refinements based on F^2 . The hydrogen atoms were set in calculated positions with a common fixed isotropic thermal parameter.

The molecular structure and the packing view of the title complex are shown in Figs. 1, 2 and 3, respectively.

The title complex crystallizes in triclinic space group P-1. The unit cell contains one Cd(II) ion, a half of adi²⁻ anion, one chloride anion, one bimt ligand and one uncoordinated water molecule. As can be seen in Fig. 1, each Cd(II) ion is hexa-coordinated by two oxygen atoms from one chelating carbo-xylate group of the adipate anion, two nitrogen atoms from two symmetry-related bimt ligands and two chloride anions, featuring an irregular CdO₂N₂Cl₂ coordination geometry. As shown in Table-2, most of the bond angles around the central Cd(II) ion deviate dramatically from the ideal angles of 90° or 180° expected for an octahedral geometry, as exemplified by the angles of O1-Cd1-O2, N6^{#1}-Cd1-Cl1, O2-Cd1-Cl1 and N6^{#1}-Cd1-O1 (55.15(6)°, 114.25(5)°, 148.95(5)° and 149.88(7)°, respectively; symmetry codes:^{#1} x, y + 1, z). The Cd-O bond lengths of 2.3288(18) and 2.4067(18) Å, Cd-N

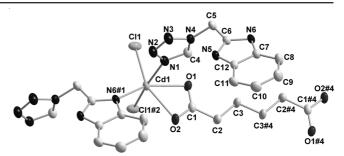


Fig. 1. Coordination environment of the Cd(II) ion in the title complex with atom numbering scheme, hydrogen atoms and uncoordinated water molecules are omitted for clarity (#1 x, y + 1, z; #2 -x + 1, -y + 2, -z + 2; #4 -x + 2, -y + 1, -z + 2)

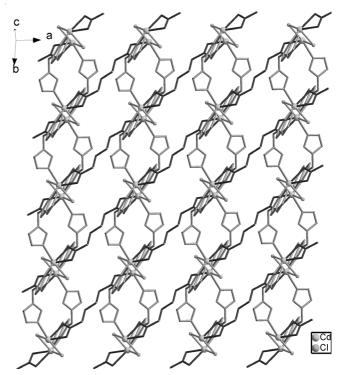


Fig. 2. View of the 2D network structure of the title complex

bond lengths of 2.2583(19) and 2.442(2) Å and Cd-Cl bond lengths of 2.5375(9) and 2.6617(14) are close to those in the reported Cd(II) complexes⁵.

As depicted in Fig. 2, two Cd(II) ions are linked together two μ_2 -bridging chlorine anions, leading to the [Cd₂Cl₂] binuclear unit. The binuclear units are bridged by adi²⁻ anions

TABLE-2 SELECTED BOND LENGTHS (Å) AND ANGLES (°) FOR THE TITLE COMPLEX						
Cd(1)-N(6)#1	2.2583(19)	Cd(1)-O(1)	2.3288(18)			
Cd(1)-O(2)	2.4067(18)	Cd(1)-N(1)	2.442(2)			
Cd(1)-Cl(1)	2.5375(9)	Cd(1)-Cl(1)#2	2.6617(14)			
N(6)#1-Cd(1)-O(1)	149.88(7)	N(6)#1-Cd(1)-O(2)	96.68(7)			
O(1)-Cd(1)-O(2)	55.15(6)	N(6)#1-Cd(1)-N(1)	90.63(8)			
O(1)-Cd(1)-N(1)	80.53(7)	O(2)-Cd(1)-N(1)	91.07(7)			
N(6)#1-Cd(1)-Cl(1)	114.25(5)	O(1)-Cd(1)-Cl(1)	94.79(5)			
O(2)-Cd(1)-Cl(1)	148.95(5)	N(1)-Cd(1)-Cl(1)	91.16(6)			
N(6)#1-Cd(1)-Cl(1)#2	100.21(6)	O(1)-Cd(1)-Cl(1)#2	90.13(6)			
O(2)-Cd(1)-Cl(1)#2	88.06(6)	N(1)-Cd(1)-Cl(1)#2	169.16(5)			
Cl(1)-Cd(1)-Cl(1)#2	84.09(3)	-	-			

Symmetry transformations used to generate equivalent atoms: #1 x, y + 1, z; #2 - x + 1, -y + 2, -z + 2

TABLE-3 HYDROGEN BONDS OF THE TITLE COMPLEX						
D-H…A	d(D-H) (Å)	d(H…A) (Å)	$d(D \cdots A) (Å)$	$(D-H\cdots A)$ (°)		
N(5)-H(5C)O(3)	0.86	1.95	2.736(3)	151.7		
O(3)-H(1W)N(2)#5	0.85	2.42	3.244(3)	164.3		
O(3)-H(2W)O(2)#6	0.85	2.04	2.858(3)	162.4		
Symmetry transformations used to generate equivalent atoms: $\#5 - x, -y + 1, -z + 1; \#6 - x + 1, -y + 1, -z + 1$						

and bimt ligands leading to 2-D layer structure with Schlafli symbol $(4^4 \cdot 6^2)$, in which both carboxylates of each adipate coordinate to Cd(II) ions in chelating mode and bimt ligands coordinate to Cd(II) ions with bridging fashion. As can be seen in Fig. 3 and Table-3, these 2-D layers are further piled up into 3-D framework by hydrogen bonding interactions.

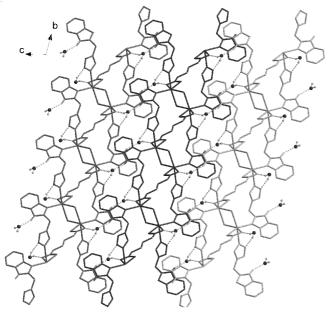


Fig. 3. 3D structure of the title complex linked by hydrogen bonds indicated by dashed lines

Conclusion

Self-assembly of CdCl₂·2.5H₂O with 2-((benzoimidazolyl)methyl)-1*H*-tetrazole (bimt) and adipic acid (H₂adi) give rise to the title complex $\{[Cd(adi)_{0.5}Cl(bimt)]\cdot H_2O\}_n$. Single crystal X-ray diffraction determination reveals that it possesses a 2-D network with Schlafli symbol $(4^4 \cdot 6^2)$, which is further extended into the 3-D supramolecular architecture *via* hydrogen bonds.

Supplementary material

CCDC 989489 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/ retrieving.html or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336033; email: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

ACKNOWLEDGEMENTS

The authors gratefully acknowledged the financial support from the Program for Innovative Research Team (in Science and Technology) in Henan College of Traditional Chinese Medicine.

REFERENCES

- (a) B.T. Liu, R. Wang, G.H. Jin and X.R. Meng, *J. Coord. Chem.*, **66**, 1784 (2013); (b) L. Cheng, J.B. Lin, J.Z. Gong, A.P. Sun, B.H. Ye and X.M. Chen, *Cryst. Growth Des.*, **6**, 2739 (2006); (c) A. Banisafar, D.P. Martin, J.S. Lucas and R.L. LaDuca, *Cryst. Growth Des.*, **11**, 1651 (2011).
- (a) S.S. Chen, R. Qiao, L.Q. Sheng, Y. Zhao, S. Yang, M.M. Chen, Z.D. Liu and D.H. Wang, *CrystEngComm*, **15**, 5713 (2013); (b) D.P. Martin, M.R. Montney, R.M. Supkowski and R.L. LaDuca, *Cryst. Growth Des.*, **8**, 3091 (2008); (c) X.J. Wang, Y.H. Liu, C.Y. Xu, Q.Q. Guo, H.W. Hou and Y.T. Fan, *Cryst. Growth Des.*, **12**, 2435 (2012); (d) T. Duangthongyou, C. Phakawatchai and S. Siripaisarnpipat, *J. Mol. Struct.*, **987**, 101 (2011).
- G.M. Sheldrick, SHELXS97, A Program for Crystal Structure Solution; University of Göttingen: Germany (1997).
- G.M. Sheldrick, SHELXL97, A Program for Crystal Structure Refinement; University of Göttingen: Germany (1997).
- (a) X. Su, T. Li, Y. Xiu and X.R. Meng, Z. Naturforsch., 67b, 678 (2012); (b) X.X. Wang, X. Han, Y. Yang and X.R. Meng, Synth. React. Inorg. Met-Org. Nano-Met. Chem., 44, 462 (2014).