

(+) Corydine from the Stems of *Tinospora cordifolia*

DEEPIKA SINGH and PRABIR K. CHAUDHURI^{*}

Medicinal Chemistry Division, Central Institute of Medicinal and Aromatic Plants, Lucknow-226 015, India

*Corresponding author: Fax: +91 522 2357136; Tel: +91 522 2718593; E-mail: pkchaudhuri_2000@rediffmail.com

Received: 24 July 2014;	Accepted: 21 October 2014;	Published online: 4 February 2015;	AJC-16844
-------------------------	----------------------------	------------------------------------	-----------

The present work constitutes the systematic chemical screening of matured stems of *Tinospora cordifolia* as matured stems are preferred in commercial formulations for its efficacy. Earlier works on *T. cordifolia* collected from wild sources showed a lot of chemical variations with altogether different compounds which pose difficulties in its quality management as marker compounds. The stems of *T. cordifolia* were collected at matured stage from our gene bank and extracted with alcohol after its defatification with hexane. The isolated alkaloidal part on repeated Si-gel, flash and reversed phase C_{18} column chromatography afforded four isoquinoline alkaloids palmatine, jatrorrhizine, magnoflorine and (+) corydine. The non-alkaloidal part gave columbin, a furano diterpenoid beside β -sitosterol. (+) Corydine, a rare alkaloid was reported first time from *T. cordifolia* and from the genus *Tinospora*. The structures of compounds were identified by 2D NMR and MS analyses.

Keywords: T. cordifolia, Stems, Isoquinoline alkaloids, Furano diterpenoid.

Tinospora cordifolia Meirs (Menispermaceae) is a perennial shrub and the whole plant parts are useful as medicine. *T. cordifolia* is used in Ayurvedic system of medicines to treat diabetes, skin diseases, jaundice, heart diseases, rheumatoid arthritis, urinary disorder and dysentery¹. The stems of *T. cordifolia* have been reported to exhibit hepatoprotective, antipyretic, cytotoxic, antidiabetic and immunomodulatory activities²⁻⁵. The alkaloidal fraction (palmatine, jatrorrhizine and magnoflorine) of stems of *T. cordifolia* reported to possess antihyperglycemic activity⁶. The free radical scavenging activity of *T. cordifolia* is reported to possess inhibitory activity against tumor cell lines, leukemia P388 and L1210, melanoma B16, bladder cancer MBC2 and colon cancer Colon 26⁸.

The chemical study on matured stems of *T. cordifolia* collected at different stages of growth from our gene bank maintained at Central Institute of Medicinal and Aromatic Plants, Lucknow, India showed the presence of alkaloids palmatine, jatrorrhizine, magnoflorine and a furano diterpenoid columbin with the isolation of (+) corydine first time from the genus Tinospora. The immature tender stems of *T. cordifolia* resulted in its low alcoholic extract (< 1 %; dw basis) with trace of alkaloid detected by Dragendorff reagent. The isolation of the above compounds are of chemotaxonomic significance as marker compounds and alkaloids perhaps play a major role

in the biological activity of the herbal extract of *T. cordifolia* in trade.

Plant material: The matured stems of *T. cordifolia* (9.6 kg, fresh weight) were collected from a cultivar of CIMAP, Gene bank, Lucknow, India, in December 2010 and dried at room temperature and ground into powder (2.5 kg).

Extraction and isolation of (+) corydine: The powdered stems were extracted with hexane and EtOH successively by cold percolation. The concentrated ethanol extract (126 g) after acidification with 5 % hydrochloric acid gave an acid insoluble residue and was filtered. The acidic filtrate was partitioned with chloroform at pH 2 and was extracted further to get CHCl₃ soluble (1.5 g) and *n*-BuOH soluble (1.3 g) alkaloids after basification with ammonia at pH 10. The CHCl₃ part (1.5 g) on chromatography over silica gel (100-200 mesh) afforded compound **1** (10 mg). Water part after *n*-BuOH extraction was neutralized and dried which on flash chromatography on Si gel and chromatography on RP C₁₈ (15 to 25 μ) successively, gave compounds palmatine (30 mg), jatrorrhizine (15 mg) and magnoflorine (35 mg), respectively from MeOH-water (60:40) as eluant.

Characterization of isolated compounds: ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance spectrometer in methanol-d₄. ESI-MS spectra were recorded on API 3000, Applied Biosystem spectrometer. Elemental analysis was done on Vario EL III. (+) **Corydine 1:** R_f value: 0.5 (MeOH-CHCl₃, 1:19); m.p. 144-145 °C; $[α]_D$ + 198° (0.2, MeOH); ¹H NMR (CD₃OD, 300 MHz, δ ppm): 6.98 (1H, d, J = 8.1 Hz, H-9), 6.91 (1H, d, J = 8.5 Hz, H-8), 6.87 (1H, s, H-3), 3.94 (3H, s, 10-OCH₃), 3.86 (3H, s, 2-OCH₃), 3.65 (3H, s, 11-OCH₃), 3.03-3.17 (3H, m, H₂-5, H_a-6), 2.80 (2H, m, H₂-4), 2.54 (3H, s, N-CH₃), 2.51 (1H, m, H_a-7), 2.38 (1H, m, H_b-7); ESI-MS *m/z* (rel. int.): 342 [M + H]⁺ (95) (calculated for C₂₀H₂₃NO₄); Elemental analysis found: %: C 70.43; H 6.77; N 4.10. C₂₀H₂₃NO₄, calculated %: C 70.38; H 6.75; N 4.11 (Fig. 1).

Fig. 1. Structure of (+) Corydine

Compound **1** in its ESI-MS showed its $[M + H]^+$ at m/z 342 which corresponded to its molecular formula $C_{20}H_{23}NO_4$. The ¹H NMR spectrum of compound **1** showed signals at δ 6.87 (H-3) and doublets at δ 6.98 (H-9) and 6.91 (H-8), respectively. Three methoxyl groups appeared at δ 3.94, 3.86 and 3.65, respectively. A singlet at δ 2.54 was assigned to N-methyl group. H-6a at δ 3.12 was determined by 2D-NOESY experiment as it showed strong NOE correlation to N-CH₃ (d 2.54). On comparison of the physical and spectral data with those reported in literature, compound **1** was identified as (+) corydine^{9,10}.

The isolation of (+) corydine 1 constitutes its first report from *T. cordifolia* and genus Tinospora¹¹. The immature tender stems of *T. cordifolia* showed traces of alkaloid by Dragendorff reagent with low yield of extract.

ACKNOWLEDGEMENT

The authors are thankful to the Director, Central Institute of Medicinal and Aromatic Plants, Lucknow, India for constant encouragement.

REFERENCES

- Y.R. Chadha, The Wealth of India, Publication and Information Directorate, CSIR, New Delhi, vol. 10, p. 251 (1976).
- C.K. Atal, M.L. Sharma, A. Kaul and A. Khajuria, *J. Ethnopharmacol.*, 18, 133 (1986).
- 3. P. Stanely, M. Prince and V.P. Menon, J. Ethnopharmacol., 70, 9 (2000).
- D.N.K. Sarma, R.L. Khosa, J.P.N. Chansauria and M. Sahai, *Phytother*. *Res.*, 9, 589 (1995).
- D.N.K. Sarma, R.L. Khosa, J.P.N. Chansauria and M. Sahai, *Phytother*. *Res.*, **10**, 181 (1996).
- 6. M.B. Patel and S. Mishra, *Phytomedicine*, 18, 1045 (2011).
- 7. V. Sharma and R. Gupta, *Toxicol. Int*, **18**, 94 (2011).
- Y. Konda, Y. Imai, H. Hojo, T. Endo and S. Nozoe, *J. Pharmacobiodyn.*, 13, 426 (1990).
- X. Wang, H. Dong, B. Yang, D. Liu, W. Duan and L.J. Huang, J. Chromatogr. B Analyt.Technol. Biomed.Life Sci., 879, 3767 (2011).
- 10. A. Shafiee and A.H. Jafarabadi, Planta Med., 64, 489 (1998).
- T.S. Panchabhai, U.P. Kulkarni and N.N. Rege, *Phytother. Res.*, 22, 425 (2008).