

NOTE

Synthesis and Crystal Structure of Dy(H₂O)₉(1,4-dimethylbenzene)₂Cl₄·H₃O

HUI LUO^{1,*} and LI-CHENG ZHU²

¹School of Medicine, Jinggangshan University, Ji'an 343009, Jiangxi Province, P.R. China ²School of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi Province, P.R. China

*Corresponding author: E-mail: luohui8100483@163.com

Received: 17 April 2014;	Accepted: 19 June 2014;	Published online: 4 February 2015;	AJC-16843

One-pot solvothermal reaction of DyCl₃·6H₂O with 1,4-dimethylbenzene and water generates Dy(H₂O)₉(1,4-dimethylbenzene)₂Cl₄·H₃O that is characterized by single-crystal X-ray diffraction. The compound crystallizes in monoclinic, space group P2₁/m with a = 7.8378(10), b = 25.103(3), c = 7.9068(10) Å, β = 119.3850(10), V = 1355.5(3) Å³, C₁₆H₄₁Cl₄DyO₁₀, Mr = 697.79, Dc = 1.710 g/cm³, μ (MoK_{α}) = 3.194 mm⁻¹, F(000) = 702, Z = 2, the final R = 0.0503 and wR = 0.1323 for 2157 observed reflections (I > 2 σ (I)). The 2-D supramolecular layer is built up from the compound by hydrogen bonds.

Keywords: Chloride, Crystal, Dimethylbenzene, Dysprosium, Solvothermal.

1,4-Dimethylbenzene (namely, *p*-xylene) is a derivative of benzene and an important raw material for chemical industries¹⁻³. As one of the basic chemical products, the *p*-xylene has become the essential element in people's life. Hydrogen bonds have recently been applied in the crystal engineering of metal-organic coordination supramolecular compounds^{4,5}. Solvothermal reactions have been employed to prepare single crystals due to the obvious advantages^{6,7}. In this paper, we reported the preparation and crystal structure of a dimethylbenzene compound Dy(H₂O)₉(1,4-dimethylbenzene)₂Cl₄·H₃O. The molecules are linked by hydrogen bonds to form 2-D supramolecular layer.

Synthesis of $Dy(H_2O)_9(1,4-dimethylbenzene)_2Cl_4\cdot H_3O$: A mixture of $DyCl_3\cdot 6H_2O$ (1 mmol, 375 mg), 1,4-dimethylbenzene 3 mL and H_2O_9 mL was sealed in a 25 mL Teflonlined stainless steel reactor and heated to 175 °C for 5 days and then cooled to room temperature spontaneously. The crystals are washed with H_2O to give the title compound in about 25 % yield (based on $DyCl_3\cdot 6H_2O$). The crystallographic data is given in Table-1.

X-ray structural determination: The X-ray diffraction data was collected at 296(2) K on a CCD area detector equipped with a graphite-monochromatized MoK_{α} radiation. Data processing was conducted with a SAINT program. The

TABLE-1					
CRYSTALLOGRAPHIC DATA AND STRUCTURE REFINEMENT SUMMARY					
Empirical formula	$C_{16}H_{41}O_{10}DyCl_4$	Temperature (K)	296(2)		
Formula weight	697.79	Radiation (MoK _{α}), λ /Å	0.71073		
Crystal size/mm ³	$0.11 \times 0.09 \times 0.06$	μ/mm^{-1}	3.194		
Crystal system	Monoclinic	$Dc/(g/cm^3)$	1.710		
Space group	P2(1)/m	F(000)	702		
a/Å	7.8378(10)	Index ranges (h, k, l)	-9/8, -29/29, -9/9		
b/Å	25.103(3)	Reflections collected/unique	$7498/2234 (R_{int} = 0.0216)$		
c/Å	7.9068(10)	Observed reflections $I > 2\sigma(I)$	2157		
β/°	119.3850(10)	Data/restraints/parameters	2157/49/151		
V/Å ³	1355.5(3)	Goodness-of-fit on F ²	1.092		
Z	2	R, wR (I > $2\sigma(I)$)	R1 = 0.0503, wR2 = 0.1323		
θ range/°	2.98/25.02	R, wR (all data)	R1 = 0.0517, wR2 = 0.1335		
(Δ/σ) max	0	Large diff. peak and hole/(e/Å ³)	1.297 and -1.365		

single-crystal structure was solved by direct methods with SHELXS-97 program and refined on F² using SHELXL-97 program by full-matrix least-squares methods with equivalent isotropic displacement parameters for all non-hydrogen atoms. The hydrogen atoms were placed according to theoretical models. CCDC: 998313.

X-ray single-crystal diffraction study reveals that the title compound crystallizes in the P2(1)/m space group and is composed of $Dy(H_2O)_9(1,4-dimethylbenzene)_2Cl_4 \cdot H_3O$ (Fig. 1). Asymmetric unit contains one crystallographically independent Dy center, one 1,4-dimethylbenzene ligand, two Cl⁻ ions, one H₃O and six coordinated water molecules. The Dy³⁺ center adopts nine-coordinated mode with nine O atoms from nine coordinated water molecules to construct a monocapped square antiprism. The Dy-O bond lengths are in the normal range of 2.438(6)-2.536(7) Å (Table-2), similar to those observed in the reported Dy-compounds⁸⁻¹⁰. An interesting structure feature of the title compound is hydrogen bond interactions. As illustrated in Fig. 2, because of hydrogen bond interactions among $Dy(H_2O)_9$ groups, Cl^- ions and H_3O molecules, the title compound presents a two-dimensional (2-D) supramolecular layer structure.

TABLE-2 SELECTED BOND LENGTHS (Å)					
Bond	(Å)	Bond	(Å)		
Dy(1)-OW2	2.438(6)	Dy(1)-OW4	2.468(5)		
Dy(1)-OW2#1	2.438(6)	Dy(1)-OW5	2.530(7)		
Dy(1)-OW3	2.462(6)	Dy(1)-OW6	2.535(7)		
Dy(1)-OW3#1	2.462(5)	Dy(1)-OW7	2.536(7)		
Dy(1)-OW4#1	2.468(5)				
Symmetry code: $\#1 \times -v + 3/2 = 7$					

Symmetry code: #1 x, -y + 3/2,

Fig. 1. Coordination environment of Dy1 and the crystal structure of the title compound

Fig. 2. A packing drawing of the title compound. The dashed lines are hydrogen bonds

Conclusion

One-pot solvothermal reaction gives $Dy(H_2O)_9(1,4-dimethylbenzene)_2Cl_4 \cdot H_3O$ is characterized by single-crystal X-ray diffraction. The 2-D supramolecular layer is built up from the compound by hydrogen bonds.

REFERENCES

- 1. G. Koleva, B. Galabov, J.I. Wu, H.F. Schaefer III and P.R. Schleyer, *J. Am. Chem. Soc.*, **131**, 14722 (2009).
- 2. M.L. Hu, A. Morsali and L. Aboutorabi, *Coord. Chem. Rev.*, **255**, 2821 (2011).
- A. Stephenson, S.P. Argent, T. Riis-Johannessen, I.S. Tidmarsh and M.D. Ward, J. Am. Chem. Soc., 133, 858 (2011).
- B. Liu, X.M. Li, C.B. Li, G.G. Gao and G.B. Che, *Chinese J. Struct. Chem.*, 26, 679 (2006).
- X.X. Xu, Y. Lu, E.B. Wang, Y. Ma and X.L. Bai, Crystal Growth, 6, 2029 (2007).
- 6. H.W. Hou, S.H. Chen, L.Y. Wang and L.F. Ma, *J. Coord. Chem.*, **61**, 2690 (2008).
- A. Jayaraman, V. Balasubramaniam and S. Valiyaveettil, *Cryst. Growth* Des., 6, 636 (2006).
- S. Ren, S.L. Ma, G.F. Xu, B. Gu, Y. Ma, Q.L. Wang and D.Z. Liao, *Inorg. Chem. Commun.*, 14, 1124 (2011).
- Cai, S.R. Zheng, J. Fan, J.B. Tan, T.T. Xiao and W.-G. Zhang, J. Solid State Chem., 184, 3172 (2011).
- X.L. Hao, M.F. Luo, X. Wang, X.J. Feng, Y.G. Li, Y.H. Wang and E.B. Wang, *Inorg. Chem. Commun.*, **14**, 1698 (2011).