

NOTE

X-ray Single-Crystal Structure of Phenanthroline Manganese(II) Complex

JIAN-HONG BI^{*} and HUA-ZE DONG

College of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, P.R. China

*Corresponding author: E-mail: bi010101@126.com

Received: 3 March 2014;	Accepted: 26 May 2014;	Published online: 4 February 2015;	AJC-16841

A new manganese(II) complex with molecular formula $C_{24}H_{32}N_4O_{12}SMn$ was synthesized and characterized by IR spectra and single-crystal X-ray. The crystal is triclinic, space group P-1 with unit cell parameters: a = 10.1775(12) Å, b = 12.2027(13) Å, c = 13.3829(15) Å, $\alpha = 109.329(2)^{\circ}$, $\beta = 91.8970(10)^{\circ}$, $\gamma = 110.846(2)^{\circ}$, V = 1444.1(3) Å³, Z = 2, Mr = 655.54, Dc = 1.508 Mg/cm³, $\mu = 0.598$ mm⁻¹, F(000) = 682, T = 293(2) K, R = 0.0414, wR = 0.1000 for 7359 reflections with I > $2\sigma(I)$. The crystal structure analysis shows that manganese(II) is six coordinated in a slightly distorted octahedron environment.

Keywords: Manganese(II) complex, Single-crystal structure.

The metal complexes containing 1,10-phenanthroline (phen) have a lot of applications in chemistry, such as diversity of molecular structures, magnetism, catalytic and biological activities¹⁻⁴. In an effort to bring these research areas, recently, in our laboratory, a series of metal complexes of phen have been synthesized and studied⁵⁻⁸. In this paper, we reported the synthesis and crystal structure of manganese (II) complex [phen₂Mn(H₂O)₂]·SO₄·6H₂O.

All reagents were of AR grade and used without further purification. IR spectra were recorded on a Nicolet 380 FT-IR spectrophotometer. The crystal structure was determined by Siemens SMART CCD area-detector diffracto-meter.

Synthesis: An aqueous solution (10 mL) of $MnSO_4$ (5 mmol) was respectively added to a mixed solution (20 mL) of 1,10-phenanthroline (10 mmol) and (10 mmol) sodium benzoate. Well-shaped yellow diamond single crystals grew within 2 weeks and were isolated in about a 36 % yield. IR spectrum (KBr, v_{max} , cm⁻¹): 3552-3045, 1637, 1581, 1506, 1413, 1120, 847, 719, 621.

Crystal structure determination: A single crystal (0.45 mm × 0.40 mm × 0.37 mm) was selected for crystallographic data collection at 298(2) K and structure determinated with graphite monochromatic MoK_{α} radiation ($\lambda = 0.71073$ Å). A total of 7359 reflections were collected in the range of 2.94° $\leq \theta \leq 25.02^{\circ}$, of which 4989 reflections were unique with R_{int} = 0.0212 and R = 0.0414 and wR = 0.1000, where w = 1/[s²(F₀²) + (0.0537 P)² + 0.6796 P], P = (F₀² + 2F₀²)/3. The maximum and minimum peaks on the final difference fourier

map are corresponding to 0.380 and -0.376 e/Å³ (CCDC No. 985898), respectively.

The atomic coordinates and thermal parameters are listed in Table-1 and the selected bond lengths and bond angles in Table-2, respectively. Fig. 1 shows diagram of the molecular structure of the complex $[phen_2Mn(H_2O)_2]$ ·SO₄·6H₂O. Fig. 2 shows a perspective view of the crystal packing in the unit cell. From the Fig. 1, it is easy to see that the manganese(II) ion is six-coordinated with four nitrogen atoms of the two phen ligands and two oxygen atoms of the two coordinated water molecules.

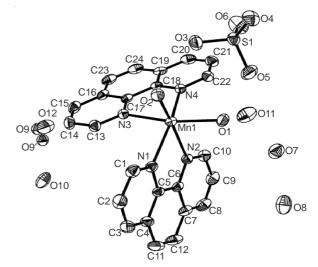


Fig. 1. Molecular structure of the complex [phen₂Mn(H₂O)₂]·SO₄·6H₂O

TABLE-1 NON-HYDROGEN ATOMIC COORDINATES (× 10 ⁴) AND THERMAL PARAMETERS (× 10 ³ Å ²)						
Atom	X	Y	Z	U(eq)		
Mn(1)	2467(1)	5620(1)	2540(1)	33(1)		
N(1)	988(3)	4414(2)	3332(2)	38(1)		
N(2)	3728(3)	6062(2)	4160(2)	37(1)		
O(1)	2269(2)	7416(2)	3274(2)	51(1)		
O(2)	784(2)	5162(2)	1315(2)	48(1)		
S (1)	1326(1)	8180(1)	971(1)	42(1)		
O(3)	767(3)	6819(2)	434(2)	60(1)		
O(4)	433(3)	8688(2)	565(2)	65(1)		

TABLE-2 SELECTED BOND LENGTHS (Å) AND BOND ANGLES (°)						
Bond	Length	Bond	Length			
Mn(1)-N(1)	2.261(2)	Mn(1)-N(4)	2.249(2)			
Mn(1)-N(2)	2.277(2)	Mn(1)-O(1)	2.170(2)			
Mn(1)-N(3)	2.274(2)	Mn(1)-O(2)	2.112(2)			
Angle	(°)	Angle	(°)			
N(1)-Mn(1)-N(2)	73.52(9)	O(1)-Mn(1)-N(1)	102.32(9)			
N(1)-Mn(1)-N(3)	90.97(9)	O(1)-Mn(1)-N(3)	166.44(9)			
N(3)-Mn(1)-N(2)	94.97(9)	O(1)-Mn(1)-N(2)	86.34(9)			
N(4)-Mn(1)-N(2)	89.92(9)	O(2)-Mn(1)-O(1)	87.22(8)			
N(4)-Mn(1)-N(3)	73.50(9)	O(2)-Mn(1)-N(4)	106.82(9)			
O(1)-Mn(1)-N(4)	93.03(9)	O(2)-Mn(1)-N(1)	91.88(9)			

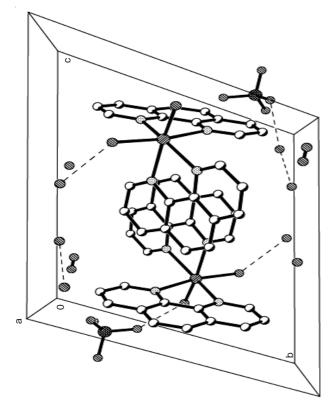


Fig. 2. Molecular packing arrangement in the unit cell

ACKNOWLEDGEMENTS

This work is financially supported by the Natural Science Foundation of Anhui Province (No. 1308085MB23) and Follow-up support from the Key Discipline Foundation of Hefei Normal University.

REFERENCES

- 1. H.A. Ali, M.D. Darawsheh and E. Rappocciolo, *Polyhedron*, **61**, 235 (2013).
- V. Gierz, A. Urbanaite, A. Seyboldt and D. Kunz, *Organometallics*, 31, 7532 (2012).
- N. Dolan, J. McGinley, J.C. Stephens, K. Kavanagh, D. Hurley and N.J. Maher, *Inorg. Chim. Acta*, 409, 276 (2014).
- 4. A.T. Colak, P. Oztopcu-Vatan, F. Colak, D. Akduman, S. Kabadere and R. Uyar, *J. Trace Elem. Exp. Med.*, **27**, 295 (2013).
- 5. J.H. Bi and H.Z. Dong, Asian J. Chem., 25, 8241 (2013).
- H. Dong, W. Tao, J. Bi, V. Milway, Z. Xu, S. Zhang, X. Meng, W. Bi, J. Li and M. Li, *Nanoscale Res. Lett.*, 6, 484 (2011).
- 7. J.H. Bi, B.Z. Li, Z.X. Huang and J. Li, Asian J. Chem., 22, 7443 (2010).
- 8. J.H. Bi, R.J. Ding, Z.X. Huang, Y. Chen and N.-L. Hu, *Asian J. Chem.*, **20**, 4963 (2008).