

NOTE

Synthesis and Structural Characterization of Diiron Azadithiolate Complex [(µ-SCH₂)₂NCH₂CO₂Me]Fe₂(CO)₄(CN-*tert*-Bu)₂

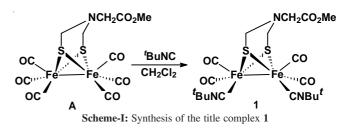
HUI LI*, QIAOJUAN GONG, XIAOCHUAN CHAI, CHENZHONG YAO and QIUPING HAN

Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, Shanxi Province, P.R. China

*Corresponding author: E-mail: lihuiwangf@163.com

Received: 5 February 2014;	Accepted: 4 May 2014;	Published online: 4 February 2015;	AJC-16838

A diiron azadithiolate complex $[(\mu$ -SCH₂)₂NCH₂CO₂Me]Fe₂(CO)₄(CN-*tert*-Bu)₂ (1), as the active site of [FeFe]-hydrogenases, has been prepared by carbonyl substitution and structurally characterized. The title complex was prepared by reaction of $[(\mu$ -SCH₂)₂NCH₂CO₂Me]Fe₂(CO)₆ (**A**) with *tert*-BuNC in CH₂Cl₂ in 46 % yield. The new complex was characterized by IR, ¹H NMR and ¹³C NMR spectroscopy.


Keywords: Diiron azadithiolate, Isocyanide.

Over the past decades, research on iron-sulfur has attracted great attention due to their close relationship with the active site of [FeFe]-hydrogenases¹⁻⁵. [FeFe]-hydrogenases are metalloenzymes which can catalyze hydrogen metabolism in several microorganism⁶⁻⁸. The well-established structure of the active site of [FeFe]-hydrogenases has provoked chemists to design and prepared a great number of [FeFe]-hydrogenases model complexes⁹⁻¹². In this paper, we report the synthesis and structural characterization of diiron azadithiolate complex [(μ -SCH₂)₂NCH₂CO₂Me]Fe₂(CO)₄(CN-*tert*-Bu)₂ containing a isocyanide ligand relevant to the active site of [FeFe]-hydrogenases.

Reaction and operation was carried out under a dry, oxygen free nitrogen atmosphere with standard Schlenk and vacuum line techniques. Dichloromethane was distilled with CaH₂ under nitrogen atmosphere. Me₃NO·2H₂O, *tert*-BuNC and other materials were commercially available and used as received. Complex A¹³ was prepared according to the literature procedures. IR spectra were recorded on a Nicolet 670 FTIR spectrometer. NMR spectra were obtained on a Bruker Avance 500 MHz spectrometer.

Synthesis: A solution of $[(\mu$ -SCH₂)₂NCH₂CO₂Me]Fe₂(CO)₆ (0.100 g, 0.22 mmol) in MeCN (10 mL) was added a solution of Me₃NO·2H₂O (0.024 g, 0.22 mmol) in MeCN (5 mL). The mixture was stirred at room temperature for 15 min and then was added *tert*-BuNC (0.048 mL, 0.44 mmol). The new mixture was stirred for 1 h to give a red solution. The solvent was reduced *in vacuo* and the residue was subjected to TLC separation using CH₂Cl₂/petroleum ether (v/v = 1:2) as eluent. From the main red band afforded 0.056 g (46 %) of **1** as a red solid. IR (KBr disk, cm⁻¹): $v(C\equiv N)$ 2143 (s); $v(C\equiv O)$ 2002 (v_s), 1968 (v_s), 1951 (v_s), 1928 (v_s); v(C=O) 1736 (s). ¹H NMR (500 MHz, CDCl₃): 3.64, 3.61 (2s, 9 H, 3SCH₂ and CH₃), 1.45 (s, 18 H, 2C(CH₃)₃) ppm. ¹³C NMR (125 MHz, CDCl₃): 213.53 (C=O), 171.23 (C=O), 158.14 (NC), 57.44 (C(CH₃)₃), 57.16 (OCH₃), 52.19 (NCH₂S), 51.78 (NCH₂), 30.83 (CH₃) ppm.

As shown in **Scheme-I**, treatment of complex A with 2 equivelents of *tert*-BuNC in CH_2Cl_2 afforded the title complex in 46 % yield. The title complex 1 was air-stable red solids, which has been characterized by IR, ¹H NMR and ¹³C NMR spectroscopy.

Infrared spectrum: The IR spectrum of **1** showed one absorption band at 2143 cm⁻¹ for isocyanide group, one absorption band at 1736 cm⁻¹ for ester carbonyls and four absorption bands in the range of 2002-1828 cm⁻¹ for the terminal carbonyls and the v(C=O) values are shifted toward lower frequencies relative to the parent complex A (2073, 2025, 1994, 1965 cm⁻¹)¹³.

¹**H NMR spectrum:** The ¹H NMR spectrum of **1** displayed two singlets at δ 3.64 and 3.61 ppm for its methylene and methyl protons and a singlet at d 1.45 ppm for methyl protons of *tert*-Bu.

¹³C NMR spectrum: The ¹³C NMR spectrum of 1 demonstrated a singlet at δ 213.53 ppm for the terminal carbonyls, a singlet at δ 171.23 ppm for ester carbonyl and a singlet at δ 158.14 ppm for isocyanide.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge to the Natural Science Foundations of China (51101138).

REFERENCES

- (a) R. Cammack, *Nature*, **397**, 214 (1999); (b) J.W. Peters, W.N. Lanzilotta, B.J. Lemon and L.C. Seefeldt, *Science*, **282**, 1853 (1998); (c) Y. Nicolet, C. Piras, P. Legrand, C.E. Hatchikian and J.C. Fontecilla-Camps, *Structure*, **7**, 13 (1999).
- A.L. De Lacey, C. Stadler, C. Cavazza, E.C. Hatchikian and V.M. Fernandez, J. Am. Chem. Soc., 122, 11232 (2000).
- (a) X. Wang, Z. Wei, X. Jiang, J. Zhao and X. Liu, *Inorg. Chim. Acta*, 392, 112 (2012); (b) Y.N. Feng, F.F. Xu, R.P. Chen, N. Wen, Z.H. Li and S.W. Du, *J. Organomet. Chem.*, 717, 211 (2012); (c) G. Durgaprasad and S.K. Das, *J. Organomet. Chem.*, 717, 29 (2012).
- (a) P.H. Zhao, Y.Q. Liu and G.Z. Zhao, *Polyhedron*, **53**, 144 (2013);
 (b) C.A. Mebi, D.S. Karr and B.C. Noll, *Polyhedron*, **50**, 164 (2013);

(c) X.F. Liu and H.Q. Gao, *Polyhedron*, 65, 1 (2013); (d) G. Durgaprasad,
R. Bolligarla and S.K. Das, *J. Organomet. Chem.*, 706-707, 37 (2012);
(e) X.F. Liu, *Polyhedron*, 72, 66 (2014).

- (a) P.H. Zhao, Y.F. Liu, K.K. Xiong and Y.Q. Liu, J. Clust. Sci., 25, 1061 (2014); (b) X.F. Liu, Z.Q. Jiang and Z.J. Jia, Polyhedron, 33, 166 (2012); (c) W.M. Gao and J.M. Li, Acta Crystallogr., E68, m118 (2012).
- (a) L.J. Luo, X.F. Liu and H.Q. Gao, *J. Coord. Chem.*, **66**, 1077 (2013);
 (b) X.F. Liu, M.Y. Chen and H.Q. Gao, *J. Coord. Chem.*, **67**, 57 (2014).
- (a) Y.L. Li, B. Xie, L.K. Zou, X. Lin and L. Wang, *Chinese J. Struct. Chem.*, **32**, 1105 (2013); (b) Y.L. Li, B. Xie, L.K. Zou, X. Lin and S.S. Zhu, Z. *Anorg. Allg. Chem.*, **639**, 1011 (2013); (c) Y.L. Li, B. Xie, L.K. Zou, X. Lin and S.S. Zhu, *Asian J. Chem.*, **26**, 183 (2014).
- (a) C.G. Li, Y. Zhu, X.X. Jiao and X.Q. Fu, *Polyhedron*, **67**, 416 (2014);
 (b) B.S. Yin, T.B. Li and M.S. Yang, *J. Coord. Chem.*, **64**, 2066 (2011);
 (c) X.F. Liu, X.W. Xiao and L.J. Shen, *Transition Met. Chem.*, **36**, 465 (2011).
- (a) X.F. Liu and H.Q. Gao, J. Clust. Sci., 25, 367 (2014); (b) X.F. Liu and H.Q. Gao, J. Clust. Sci., 25, 495 (2014).
- (a) X.F. Liu, J. Organomet. Chem., **750**, 117 (2014); (b) X.F. Liu and X.W. Xiao, J. Organomet. Chem., **696**, 2767 (2011); (c) Y.L. Li, B. Xie, L.K. Zou, X. Lin, Y. Yang, S.S. Zhu and T. Wang, *Polyhedron*, 67, 490 (2014).
- (a) P.H. Zhao, Y.Q. Liu and X.A. Li, Asian J. Chem., 25, 5428 (2013);
 (b) M. El-Khateeb, M. Harb, Q. Abu-Salem, H. Görls and W. Weigand, Polyhedron, 61, 1 (2013);
 (c) X.F. Liu and B.S. Yin, J. Coord. Chem., 63, 4061 (2010);
 (d) X.F. Liu, Inorg. Chim. Acta, 378, 338 (2011).
- 12. Y.L. Li, B. Xie, L.K. Zou, X.L. Zhang and X. Lin, *J. Organomet. Chem.*, **718**, 74 (2012).
- 13. X.F. Liu, X.W. Xiao and L.J. Shen, J. Coord. Chem., 64, 1023 (2011).