

Preparation of NiS₂ Nanoparticles under Microwave Irradiation and Catalytic Reduction of 4-Nitrophenol

HAE SOO PARK and WEON BAE KO*

Department of Chemistry, Sahmyook University, Seoul 139-742, Republic of Korea

*Corresponding author: Fax: +82 2 9795318; Tel: +82 2 33991700; E-mail: kowbsahmyook@syu.ac.kr; kowb@syu.ac.kr

Received: 24 February 2014;	Accepted: 14 May 2014;	Published online: 4 February 2015;	AJC-16766

Nickel disulfide nanoparticles were synthesized from $NiCl_2 \cdot 6H_2O$ and $Na_2S_2O_3 \cdot 5H_2O$ under microwave irradiation. The nickel disulfide nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV-visible spectrophotometry. Nickel disulfide nanoparticles were used as a catalyst for the reduction of 4-nitrophenol to 4-aminophenol. The resulting product was confirmed by UV-visible spectrophotometry.

Keywords: Nickel disulfide nanoparticles, Microwave irradiation, Catalyst, UV-visible spectrophotometer.

INTRODUCTION

Transition metal chalcogenide nanomaterials have attracted considerable attention because of their optical, magnetic and catalytic properties¹⁻³. Transition metal disulfides, such as iron disulfide, copper disulfide and nickel disulfide, have been studied extensively⁴. These disulfides have attracted significant interest in a range of fields, such as hydrodesulfurization catalysts, photoactive materials, magnetic materials and solidstate lubricants^{5,6}. In particular, NiS₂ has two main phases, a triclinic phase and cubic phase⁷. Cubic pyrite NiS₂ possesses significant electronic and magnetic characteristics⁸. Some methods for the synthesis of nanoscale nickel disulfide particles have been reported, such as chemical vapor deposition, solidstate reactions and wet chemical and thermal techniques^{6,9-12}. The application of microwave irradiation in the synthesis of nanoparticles has been reported¹³. The microwave-assisted hydrothermal technique is one of the methods for nanoscale synthesis¹⁴. The microwave irradiation to hydrothermal reactions provides rapid, straightforward and inexpensive ways of obtaining the desired products from a given chemical reaction⁴.

Aromatic amines are used widely as intermediates in industry for the synthesis of agrochemicals and dyes^{15,16}. Aromatic amines are generally synthesized by the reduction of aromatic nitro compounds by catalytic hydrogenation and stoichiometric reduction^{17,18}. Catalytic hydrogenation is a convenient method for reducing aromatic nitro compounds in high yield¹⁹.

This paper reports the preparation of NiS_2 under microwave irradiation and the reduction of 4-nitrophenol in an aqueous solution with sodium borohydride in the presence of NiS_2 as a catalyst.

EXPERIMENTAL

NiCl₂·6H₂O was purchased from Daejung chemicals, Na₂S₂O₃·5H₂O was obtained from Shinyo pure chemicals. 4-Nitrophenol was supplied by Sigma-Aldrich. NaBH₄ and ethanol were acquired from Samchun Pure Chemical.

UV-visible spectroscopy of all the samples was performed using a UV-visible spectrophotometer (Shimazu, UV-1601 PC). The structure of the NiS₂ nanoparticles was characterized by X-ray diffraction (XRD, Bruker, D8 Advance). The morphology and size of the synthesized NiS₂ nanoparticles were investigated by transmission electron microscopy (TEM, JEOL Ltd, JEM-2010) at an acceleration voltage of 200 kV. The surface of the NiS₂ nanoparticles was examined by scanning electron microscopy (SEM, JEOL Ltd, JSM-6510) at an acceleration voltage of 0.5 to 30 kV. Microwave irradiation was performed with continuous heating at the maximum power using a domestic oven (2450 MHz, 700 W).

Preparation of NiS₂ **nanoparticles under microwave irradiation:** 0.9508 g of NiCl₂·6H₂O and 1.9854 g of Na₂S₂O₃·5H₂O were dissolved in 100 mL deionized water to prepare a solution containing 0.04 M NiCl₂ and 0.08 M Na₂S₂O₃. The mixture solution was stirred vigorously for 10 min. The beaker containing the mixture solution was reacted under microwave irradiation for 10 min. After the reaction was completed, the black precipitate was washed several times with ethanol and dried at room temperature. Catalytic efficiency of NiS₂ nanoparticles for the reduction of 4-nitrophenol: The catalytic efficiency of the NiS₂ nanoparticles for the reduction of 4-nitrophenol was analyzed. In a typical experiment, a solution containing 15 mg of NaBH₄ as a hydrogen source and 0.067 mM 4-nitrophenol was mixed with 2 mg of the NiS₂ nanoparticles. The UV-visible spectra of the mixture were recorded continuously after adding the NiS₂ nanoparticles. The product of 4-nitrophenol reduction to 4-aminophenol was confirmed by UV-visible spectrophotometry.

RESULTS AND DISCUSSION

Fig. 1 shows the optical properties of the synthesized NiS₂ nanoparticles dispersed in ethanol at $\lambda_{max} = 264$ nm.

Fig. 1. UV-visible spectrum of the synthesized NiS₂ nanoparticles

The crystal structure of the synthesized NiS₂ nanoparticles was examined by XRD with CuK_{α} radiation. Fig. 2 shows XRD patterns of the synthesized NiS₂ nanoparticles. The characteristic peaks of the synthesized NiS₂ nanoparticles were observed at 27.35°, 31.68°, 35.28°, 38.59°, 45.42°, 53.38°, 56.43°, 59.43° 61.89° and 72.92° 20, which were assigned to the (111), (200), (210), (211), (220), (311), (222), (023), (321) and (331) plane indices.

Fig. 2. XRD pattern of the synthesized NiS₂ nanoparticles

Fig. 3 shows TEM images of the synthesized NiS_2 nanoparticles. The synthesized NiS_2 nanoparticles appeared to agglomerate. The synthesized NiS_2 nanoparticles had a

Fig. 3. TEM image of the synthesized NiS_2 nanoparticles

quasi-spherical shape. The mean size of the synthesized NiS₂ nanoparticles was 70 nm.

Fig. 4 shows SEM images of the synthesized NiS₂ nanoparticles. SEM images of the synthesized NiS₂ nanoparticles showed a triangle shape and a finely agglomerated phase.

Fig. 4. SEM image of the synthesized NiS₂ nanoparticles

Fig. 5 showed UV-visible spectra of the reduction of (a) 4-nitrophenol to (b) 4-aminophenol with 15 mg NaBH₄ by 2 mg of NiS₂ nanoparticles as a catalyst for 5 min; the interval between each peak was 1 min. The absorbance of the peak at 400 nm due to the 4-nitrophenolate ion decreased gradually with time due to the reduction of 4-nitrophenol. The absorbance of the peak at 300 nm due to 4-aminophenol increased gradually with time. This reduction was highlighted by the disappearance of the peak at 400 nm. The color of the solution changed from yellow to colorless. Therefore, NiS₂ nanoparticles could be used as an effective catalyst to reduce 4-nitrophenol to 4-aminophenol with NaBH₄.

Fig. 5. UV-visible spectra of the reduction of (a) 4-nitrophenol to (b) 4-aminophenol with 15 mg of NaBH₄ and 2 mg of NiS₂ nanoparticles as a catalyst for 5 min; the interval between each peak is 1 min

Conclusion

Microwave irradiation was used to synthesize NiS_2 nanoparticles. The resulting NiS_2 nanoparticles showed a quasispherical shape with a mean size of 70 nm. The NiS_2 nanoparticles showed a maximum absorption wavelength of 264 nm. The characteristic peaks of the NiS_2 nanoparticles were observed at 27.35°, 31.68°, 35.28°, 38.59°, 45.42°, 53.38°, 56.43°, 59.43° 61.89° and 72.92° 20. UV-visible spectroscopy confirmed the reduction of 4-nitrophenol by a decrease in the peak at 400 nm with the concomitant appearance of a new peak at 300 nm due to 4-aminophenol. Overall, NiS_2 nanoparticles are effective as a catalyst for the reduction of 4-nitrophenol to 4-aminophenol with NaBH₄.

ACKNOWLEDGEMENTS

This study was supported by Sahmyook University funding in Korea.

REFERENCES

- 1. I.J. Ferrer and C. Sánchez, J. Mater. Process. Technol., 92-93, 239 (1999).
- 2. D.L. Leslie-Pelecky and R.D. Rieke, Chem. Mater., 8, 1770 (1996).
- 3. J.Y. Ying, Chem. Eng. Sci., 61, 1540 (2006).
- E.C. Linganiso, S.D. Mhlanga, N.J. Coville and B.W. Mwakikunga, J. Alloys Comp., 552, 345 (2013).
- A. Olivas, I. Villalpando, S. Sepúlveda, O. Pérez and S. Fuentes, *Mater. Lett.*, 61, 4336 (2007).
- G. An, L. Chenguang, Y. Hou, X. Zhang and Y. Liu, *Mater. Lett.*, 62, 2643 (2008).
- 7. D. Mondal, G. Villemure, G. Li, C. Song, J. Zhang, R. Hui, J. Chen and C. Fairbridge, *Appl. Catal. A*, **450**, 230 (2013).
- 8. J.M. Honig and J. Spalek, Chem. Mater., 10, 2910 (1998).
- 9. X.H. Chen and R. Fan, *Chem. Mater.*, **13**, 802 (2001).
- A. Fujimori, K. Mamiya, T. Mizokawa, T. Miyadai, T. Sekiguchi, H. Takahashi, N. Môri and S. Suga, *Phys. Rev. B*, 54, 16329 (1996).
- 11. Q. Xuefeng, L. Yadong, X. Yi and Q. Yitai, *Mater. Chem. Phys.*, **66**, 97 (2000).
- 12. Y.-W. Chiang, A.J. Costa-Filho, B. Baird and J.H. Freed, *J. Phys. Chem.*, **115**, 10462 (2011).
- J.H. Lee, B.E. Park, Y.M. Lee, S.H. Hwang and W.B. Ko, *Curr. Appl. Phys.*, 9, e152 (2009).
- 14. M.N. Nadagouda, T.F. Speth and R.S. Varma, *Acc. Chem. Res.*, **44**, 469 (2011).
- 15. A. Henglein, Chem. Rev., 89, 1861 (1989).
- 16. W.P. Halperin, Rev. Mod. Phys., 58, 533 (1986).
- S.D. Oh, K.R. Yoon, S.H. Choi, A. Gopalan, K.P. Lee, S.H. Sohn, H.D. Kang and I.S. Choi, *J. Non-Cryst. Solids*, **352**, 355 (2006).
- S.-D. Oh, B.-K. So, S.-H. Choi, A. Gopalan, K.-P. Lee, K. Ro Yoon and I.S. Choi, *Mater. Lett.*, **59**, 1121 (2005).
- 19. J.H. Lee, S.K. Hong and W.B. Ko, J. Ind. Eng. Chem., 16, 564 (2010).