

Study on Oxidation of 1,2-Dipropyldisulfane in Oxidative Desulfurization

Y.Z. Song

Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai An 223300, P.R. China

Corresponding author: Tel: +86 517 83525083; E-mail: songyuanzhi@126.com; songyuanzhi@sina.com

Received: 7 June 2014;	Accepted: 12 September 2014;	Published online: 19 January 2015;	AJC-16731
------------------------	------------------------------	------------------------------------	-----------

DFT calculations were performed for calculation of standard electrode potential for 1,2-dipropyldisulfane sulfone/2-dipropyldisulfane. The electrochemical behaviour of 1,2-dipropyldisulfane at gold electrode was investigated by cyclic voltammety and the results showed that experimental standard electrode potential for 1,2-dipropyldisulfane sulfone/1,2-dipropyldisulfane is 1.111 V, which is consistent with that of 1.067 V at B3LYP/6-31++g(d, p)-PCM level. The front orbit theory and Mülliken charges of moleculer explain well on the oxidation of 1,2-dipropyldisulfane in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization system of 1,2-dipropyldisulfane/H₂O₂, is 2.27×10^{89} , which is consistent with the theoretical equilibrium constant is 2.10×10^{95} at B3LYP/6-31++g(d, p)-PCM level, indicating that 1,2-dipropyldisulfane can be oxidized by H₂O₂.

Keywords: 1,2-Dipropyldisulfane, Standard electrode potential, Oxidative desulfurization.

INTRODUCTION

In recent years, deep desulfurization of fuel oils has attracted increasing attention worldwide because sulfur compounds such as 1,2-dipropyldisulfane (DPPDF) present in fuel oils lead to SO_x emission and acid rains¹. The conventional industrial process removing sulfur-containing compounds from middle distillate fuels is hydrodesulfurization (HDS)²⁻⁴. To meet new sulfur standards with hydrodesulfurization process, operation at higher temperature and higher pressure with more active catalysts is indispensable, leading to higher investment and operating cost. Therefore, several new processes have been developed to remove these refractory sulfur-containing compounds satisfactorily. Such alternative processes include selective adsorption⁵⁻⁸, extractive separation⁸, bio-oxidation^{9,10} and oxidative desulfurization (ODS)¹¹⁻¹⁶ for removal of sulfur from hydrocarbon fuels. Among these alternative processes, the oxidative desulfurization process has received much attention as an alternative process for the desulfurization because of its advantages of mild temperature and pressure conditions. Another important feature of oxidative desulfurization is that benzothiophene (BT), dibenzothiophene (DBT), thiophene (TH) and their derivative^{11,12,15} are oxidized to their corresponding sulfoxides and sulfones subsequently. Then, these highly polarized products can be separated by means of solvent extraction or adsorption. Besides, the oxidative desulfurization process is a non-hydrogen consuming desulfurization method. Thus oxidative desulfurization was considered as one of the most promising alternative desulfurization processes to obtain ultra low sulfur fuels^{12,13-16}, more and more attentions have been paid to disulfide in oxidative desulfurization.

The divalent sulfur can be oxidized by the electrophilic addition reaction of oxygen atoms to form the hexavalent sulfur of sulfones¹³. Fig. 1 illustrates the oxidation reaction scheme for 1,2-dipropyldisulfane.

The reaction speed of a reaction is controlled by the catalyst, temperature and content and the equilibrium constant, the reaction limit, is controlled by the standard potential. Therefore, the study on the standard potential of sulfur compounds is very important and indispensable.

DFT using hybrid functionals has emerged as very powerful theoretical method¹⁷⁻²⁰, we select a B3LYP method using 6-31g(d, p) and 6-31++g (d, p) basis sets to study the geometries of molecules and the standard electrode potential of half reaction for DPPDF_(O)/DPPDF_(R).

This paper describes the determination method of standard electrode potential for $DPPDF_{(O)}/DPPDF_{(R)}$ by cyclic voltammetry and the theoretical calculation of standard electrode potential for $DPPDF_{(O)}/DPPDF_{(R)}$.

EXPERIMENTAL

All solutions were prepared with distilled-water. 1,2-Dipropyldisulfane was procured from Aldrich. All reagents were of analytical grade.

Fig. 1. Reaction scheme for the oxidation of 1,2-dipropyldisulfane

Electrode preparation: A cylindrical glass electrode, 3 mm in diameter and 50 mm in length, was used for the preparation of the modified electrode as follows. The glass electrodes were prepared for the experiments by polishing to gain a mirror-like appearance, first with fine wet emery papers (grain size 4000) and then with 1 and 0.3 alumina slurry on micro cloth pads (Buehler, USA). The glass electrode was activated by holding the potential in 0.1 M H₂SO₄ at + 2 V for 5 s and then at -0.35 V for 10 s, followed by potential cycling between -0.35 and +1.5 V at 4 V s⁻¹ for 1 min. Finally, the CV characteristic of a clean gold electrode was recorded.

For all electrochemical experiments a CHI660B Electrochemical Analyzer (CHI, USA) was employed. The electrochemical cells consisted of a three electrode, a saturated calomel electrode (SCE), a platinum wire and a glass electrode, were used as the reference, auxiliary and working electrode, respectively. All CV experiments were carried out at 25 °C.

Calculation methods: All the calculations were performed by using the DFT method $(B3LYP)^{21}$ with the splitpolarised 6-31g(d, p) and diffusion function 6-31++ g(d, p) basis sets using the Gaussian 09 suite of programs²². Optimized geometries of DPPDF₍₀₎, DPPDF_(R), HBQ, BQ and H₂O in water with no geometrical restriction were calculated using the polarizable continuum model (PCM)²³⁻²⁵. All optimized geometries were further examined through vibrational frequency analysis.

RESULTS AND DISCUSSION

Electrochemical investigation of DPPDF_(R) at glass electrode: 2 μ L of DPPDF_(R) was added into the surface of glass electrode and the glass electrode insert into 1 M HCl aqueous solution. The cyclic voltammogramm (CVs) of DPPDF_(R) at glass electrode in 1 M HCl aqueous solution are shown in Fig. 2, the first cyclic voltammogramm scan toward positive direction was performed, an oxidation peak of DPPDF_(R) at the glass electrode appeared at 0.869 V (*vs.* SCE), no peaks at about 0.869 V for bare glass electrode were found.

Laviron's equation for an irreversible redox couple is given as $^{\rm 26,27}$

$$E_{p} = E^{of} + \frac{RT}{\alpha nF} \ln \frac{RTk_{s}}{\alpha nF} + \frac{RT}{\alpha nF} \ln v$$

where α is transfer cofficient, E_p is peak potential, k_s is standard rate constant of the surface reaction, v is scan rate, E^{of} is the conditional potential, n is electron transfer number involved in rate determining step, R is the gas constant, T is the absolute temperature and F is the Faraday constant. When the scan rate is close to zero, E_p equates $E^{of 26-30}$.

Fig. 2. Cyclic voltammogramm of 1,2-dipropyldisulfane at glass electrode (a) and bare glass electrode (b) at scan rate of 10 mV/s in 1 M HCl aqueous solution

According to Nernst's equation the peak potential for $DPPDF(O)/DPPDF_{(R)}$ can be written as

$$E_{p} = E_{DPPDF_{(0)}/DPPDF_{(R)}}^{of} + \frac{0.059}{4} lg \frac{c_{H^{+}}^{4} c_{DPPDF(0)}}{c_{DPPDF(R)}}$$
(25 °C)

If the activities of hydrogen ion is given as $c_{H^+} = 1 \text{ mol/L}$,

 $c_{DPPDF(O)} = C_{DPPDF(R)}$, then the peak potential and standard electrode potential for DPPDF_(O)/DPPDF_(R) can be written as

$$E_{p} = E_{DPPDF_{(O)}/DPPDF_{(R)}}^{ot}$$

If the activity of hydrogen ion is given as $\alpha_{H^*} = 1 \text{ mol/L}$ the relationship between the conditional potential and standard electrode potential for DPPDF₍₀₎/DPPDF_(R) can be written as

$$E_{\text{DPPDF}_{(0)}/\text{DPPDF}_{(R)}}^{\text{of}} = E_{\text{DPPDF}_{(0)}/\text{DPPDF}_{(R)}}^{\circ}$$

$$+ \frac{0.059}{4} \log \frac{\gamma_{\text{DPPDF}_{(0)}} \alpha_{\text{DPPDF}_{(R)}}}{\gamma_{\text{DPPDF}_{(D)}} \alpha_{\text{DPPDF}_{(R)}}} (25 \text{ °C})$$

where γ , α and E^o represent activity coefficient, side reaction coefficient and standard electrode potential, respectively. Because DPPDF_(R) and DPPDF_(O) are neutral molecules the activity coefficient, side reaction coefficient and standard

electrode potential can be written as $\gamma_{DPPDF_{(0)}} = \gamma_{DPPDF_{(R)}} = 1$,

 $\alpha_{_{DPPDF_{(O)}}} = \alpha_{_{DPPDF_{(R)}}} = 1 \text{ and } E_{_{\circ DPPDF_{(O)}/DPPDF_{(R)}}}^{of} = E_{_{DPPDF_{(O)}/DPPDF_{(R)}}}^{\circ}.$

The standard electrode potential (E°) versus normal hydrogen electrode (NHE) for DPPDF_(O)/DPPDF_(R) is calculated as³¹

$$\mathbf{E}_{\text{vs.SHE}}^{\circ} = \mathbf{E}_{\text{vs.SCE}}^{\circ} + \mathbf{E}_{\text{SCE}}(0.242\text{V})$$

Therefore, the oxidation potential at 10 mV/s for DPPDF_(O)/DPPDF_(R) is close to the conditional potential, the calculated standard potential as above method for DPPDF_(O)/DPPDF_(R) is 1.111 V (*vs.* SHE).

Geometry of 1,2-dipropyl disulfane: The molecular geometries of DPPDF_(O) and DPPDF_(R) are important because the properties are controlled by the geometries, the geometries and numeration of atoms in both DPPDF_(R) and DPPDF_(O) are shown in Fig. 3. The selected bond lengths and bond angles of both DPPDF_(R) and DPPDF_(O) optimized at the BLYP/6-31g(d, p)-PCM and B3PP/6-31++g(d, p)-PCM levels are also listed in Table-1. Table-1 showed that the bond lengths and bond angles of the same molecule at BLYP/6-31g (d, p)-PCM level are in a good agreement with the those at B3LYP/6-31++g(d, p)-PCM level.

Fig. 3. Numbering in both $DPPDF_{(R)}$ and $DPPDF_{(O)}$ and geometries optimized at B3LYP/6-31++g (d, p)-PCM level

Eigenvalues of LUMO and HOMO: The highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and energies gap of HOMO and

LUMO for DPPDF_(R) and DPPDF_(O) are shown in Table-2. The eigenvalues of LUMO and HOMO and its energies gap reflect the chemical activity of molecule. From Table-2 the results show that the energies of HOMO for DPPDF_(R) are higher than that of DPPDF_(O), indicating that DPPDF_(R) donates electrons easily. As a result, the oxidation reaction occurs in DPPDF_(R).

It can be seen from Fig. 4 that the electronic density in the HOMO states of DPPDF_(R) and DPPDF_(O) is associated with carbon and sulfur atoms. However, the electronic density in the HOMO states of DPPDF_(R) is associated with S atom, which lost electrons easily. The sulfur atoms in HOMO state with p- π and π - π conjugate of S=O for DPPDF_(O) lost electrons difficultly. Therefore, when the oxidation reaction begins, the sulfur atoms in DPPDF_(R) can be oxidized easily.

Fig. 4. Electronic density in the HOMO and LUMO states of DPPDF_(R) and DPPDF_(O) calculated by B3LYP/6-31++g(d, p)-PCM method: (a) HOMO orbital for DPPDF_(R); (b) LUMO orbital for DPPDF_(R); (c) HOMO orbital for DPPDF_(O); (d) LUMO orbital for DPPDF_(O)

Distribution of Mülliken charge and dipole moment: To remove of sulfur compounds in hydrocarbon fuels, the oxidation products of sulfur compounds in ODS system must be solvable in water. The solubility of a compound is controlled by the dipole moments. Thus, the dipole moments of $DPPDF_{(R)}$ and DPPDF(O) are discussed here. The total dipole moments of DPPDF(R) and DPPDF(O) at B3LYP/6-31g(d, p) level are 3.2293 and 3.2081 Debye, respectively, which are consistent with those of 3.2584 for DPPDF_(R) and 3.1422 for DPPDF_(O) at B3LYP/6-31++g(d, p) level, indicating that DPPDF_(R) and $DPPDF_{(0)}$ are weak polar molecules. The charges of the compound affects on its polarity, thus the charges of atoms are discussed. Distribution of Mülliken charges of molecules are shown in Table-3. From Table-3 the Mülliken charges of S in DPPDF $_{(O)}$ are more positive than that of S in DPPDF $_{(R)}$, and the Mülliken charges of O₁₄ and O₁₅ in DPPDF_(O) are markedly more negative than the other atoms. However, the framework group of both $DPPDF_{(O)}$ and $DPPDF_{(R)}$ are C_1 . Hence, $DPPDF_{(O)}$ is insoluble in water and separable from oil difficultly. The oxidation reaction for $DPPDF_{(R)}$ in aqueous solution occurs difficultly, a carrier must be presented in ODS for transferring $DPPDF_{(R)}$ from oil to aqueous solution.

1090 Song

TABLE-1 GEOMETRY PARAMETER OF DPPDF _(R) AND DPPDF _(O)								
Compound	DPF	PDF _(R)	DPPDF ₍₀₎					
Basis sets	6-31g(d, p)	6-31++g(d,p)	6-31g(d, p)	6-31++g(d,p)				
Bond length (Å)								
R(1.2)	1.534	1.535	1.533	1.535				
R(2,3)	1.531	1.532	1.534	1.535				
R(3.4)	1.852	1.852	1.820	1.826				
R(4,5)	2.083	2.085	2.295	2.325				
R(5,6)	1.852	1.852	1.820	1.826				
R(6,7)	1.531	1.532	1.534	1.535				
R(7.8)	1.534	1.535	1.533	1.535				
R(4,9)	-	-	1.474	1.477				
R(4,10)	-	_	1.477	1.479				
R(5.11)	_	_	1.477	1 479				
R(5,12)	-	_	1.474	1.477				
(-,)		Angle (°)						
$\Delta(1,2,3)$	111.6	111.6	110.5	110.1				
A(2,3,4)	109.4	109.5	110.5	110.1				
$\Lambda(2, 5, 7)$	104.1	104.0	102.1	102 4				
$\Delta(4,5,6)$	104.1	104.0	102.1	102.4				
$\Lambda(5,6,7)$	109.4	109.5	110.5	110.0				
- A(6.7.8)	111.6	111.6	110.5	110.9				
A(0,7,8)	111.0	111.0	110.5	110.1				
A(3,4,5)			100.2	110.5				
A(5,4,10)	-	-	109.7	107.2				
A(5,4,5)	-	-	107.0	107.2				
A(0,4,10)	-	-	120.4	110.0				
A(9,4,10)	-	-	105.6	105 4				
A(4,5,11)	-	-	103.0	2				
A(4,5,12)	-	-	107.0	110.1				
A(0,5,11)	-	-	110.2	110.1				
A(0,5,12)	-	-	120.4	110.5				
A(11,5,12)	-	- Dihadual au alaa (Å)	120.4	119.9				
	170.0	Dinedral angles (A)	100.0	170.0				
D(1,2,3,4)	-179.8	-179.9	-180.0	-179.9				
D(2,3,4,5)	-1/7.2	-1/7.0	-1/6.0	-1/8.1				
D(3,4,5,6)	-87.1	-87.3	144.1	148.0				
D(4,5,6,7)	-1/7.2	-177.0	-1/6.0	-1/8.1				
D(5,6,7,8)	-1/9.8	-179.9	-180.0	-179.9				
D(2,3,4,9)	-	-	/0.6	68.1				
D(2,3,4,10)	-	-	-64.2	-66.4				
D(3,4,5,11)	-	-	29.4	32.8				
D(3,4,5,12)	-	-	-100.1	-95.9				
D(9,4,5,6)	-	-	-100.1	-95.9				
D(9,4,5,11)	-	-	145.2	148.9				
D(9,4,5,12)	-	-	15.7	20.2				
D(10,4,5,6)	-	-	29.4	32.8				
D(10,4,5,11)	-	-	-85.3	-82. 4				
D(10,4,5,12)	-	-	145.2	148.9				
D(11,5,6,7)	-	-	-64.2	-66.4				
D(12,5,6,7)	-	-	/0.6	68.1				

TABLE-2 EIGENVALUES OF LUMO AND HOMO AND ENERGY GAP OF HOMO AND LUMO							
Compound	DPPDF _(O)	DPPDF _(O)	DPPDF _(R)	DPPDF _(R)			
Basis sets	6-31g(d, p)	6-31++g(d, p)	6-31g(d, p)	6-31++g(d, p)			
E _{HOMO} (eV)	-6.640	-7.790	-6.520	-7.482			
E _{LUMO} (eV)	-0.959	-2.483	-0.714	-1.895			
E _{LUMO} - E _{HOMO} (eV)	5.680	5.307	5.806	5.587			

Calculated standard electrode potential: The theoretical calculation of standard electrode potential for $DPPDF_{(0)}$ / $DPPDF_{(R)}$ versus benzoquinone (BQ)/hydroquinone (HBQ)

 $DPPDF_{(R),solu} - 8e^{-} - 8H^{+} + 4H_2O_{solu} \longrightarrow DPPDF_{(O),sol}$ $HBQ_{solu} - 2e - 2H^{+} \longrightarrow BQ_{solu}$

 $(E_{BQ/HBQ}^{\circ} = 0.699V [31])$ can be designed as

where $DPPDF_{(O),solu}$, $DPPDF_{(R),solu}$, BQ_{solu} , H_2BQ_{solu} represent 1,2-dipropyldisulfane sulfone, 1,2-dipropyldisulfane, benzo-

Study on Oxidation of 1,2-Dipropyldisulfane in Oxidative Desulfurization 1091

TABLE-3 DISTRIBUTION OF MÜLLIKEN CHARGE								
Compound	DPPDF _(O)	DPPDF _(O)	DPPDF _(R)	DPPDF _(R)				
Basis sets	6-31g(d, p)	6-31++g(d, p)	6-31g(d, p)	6-31++g(d, p)				
C ₁	0.043848	-0.132790	0.016552	-0.156120				
C_2	0.080744	0.164807	0.046703	0.164351				
C_3	-0.005970	0.350732	-0.024510	0.005953				
S_4	0.954838	0.629388	-0.038740	-0.014180				
S ₅	0.954840	0.629392	-0.038740	-0.014180				
C_6	-0.005970	0.350731	-0.024510	0.005953				
C ₇	0.080742	0.164805	0.046703	0.164351				
C_8	0.043847	-0.132790	0.016552	-0.156120				
O_9	-0.527020	-0.510680	-	-				
O ₁₀	-0.546430	-0.501460	-	-				
O ₁₁	-0.546440	-0.501460	-	-				
O ₁₂	-0.527020	-0.510680	-	-				

quinone and hydroquinone in water, respectively, then redox reaction is given as

$$\begin{split} DPPDF_{(0),solu} + 4HBQ_{solu} &= DPPDF_{(R),solu} + 4H_2O_{solu} + 4BQ_{solu} \\ The transformed Gibbs energy above reaction is written as \\ \Delta rG_{solu} &= \Sigma[G_{solu}, product]_i - [G_{solu}, reactant]_i \end{split}$$

where G_{solu} represents Gibbs free energies of products and reactants in water at 298.15 K, 1 atm, which can be calculated from Gaussian 09 package and ΔrG_{solu} represent the standard transformed Gibbs energy of reaction in water.

Standard electrode potential (E°) of half reaction for $DPPDF_{(0)}/DPPDF_{(R)}$ is calculated as

$$\Delta r G_{\text{solu}}(298.15 \text{ K}, 1 \text{ atm}) = -nF(\vec{E}_{\text{DPPDF}_{(0)}/\text{DPPDF}_{(R)}} - \vec{E}_{\text{BQ}/\text{HBQ}})$$

The calculated thermochemistry values of this reaction from Gaussian 09 are shown in Table-4, the $\Delta rG(298.15 \text{ K})$ for the redox reaction and standard electrode potentials (E°) of half reaction for DPPDF₍₀₎ and DPPDF_(R) are also calculated. From Table-4 the standard potential of 0.965 V calculated at B3LYP/6-31g (d, p)-PCM level is less than that at B3LYP/6-31++g(d, p)-PCM level and the predicted standard electrode potentials of 1.067V at B3LYP/6-31++g(d, p) -PCM level is more close to the experimental values of 1.111 V for DPPDF₍₀₎/ DPPDF_(R) in 1 M HCl aqueous solution.

Equilibrium constant: The H_2O_2 as an oxidizer is present in current ODS; therefore, the redox reaction is designed as

 $4H_2O_2 + DPPDF_{(R)} \longrightarrow 4H_2O + DPPDF_{(O)}$

The equilibrium constant (K) of above reaction is calcu-

lated as $(E_{H_2O_2/H_2O}^{\circ} = 1.77[31])$

$$\log K = \frac{n(E^{\circ}_{H_2O_2/H_2O} - E_{DPPDF_{(O)}/DPPDF_{(R)}})}{0.059} (25 \text{ °C}, 1 \text{ atm}).$$

The experimental equilibrium constant can be calculated to be 2.27×10^{89} and the theoretical equilibrium constant can

be calculated to 2.10×10^{95} at B3LYP/6-31++g(d, p)-PCM level. The results indicated that the concentration of DPPDF_(R) in water is very low. Therefore, 1,2-dipropyldisulfane can be oxidized by H₂O₂. However, DPPDF_(R) in oil is controlled by not only the concentration of H₂O₂ and DPPDF_(O) but also the concentration of DPPDF_(R) in water, the catalyst and temperature.

Conclusion

The geometries of DPPDF₍₀₎ and DPPDF_(R) are optimized at B3LYP/6-31g (d, p)-PCM and B3LYP/6-31++g(d, p)-PCM level. The predicted standard electrode potentials of 1.067 V at B3LYP/6-31++g(d, p)-PCM level are in agreement with experimental date (1.111 V for DPPDF_(R) at scan rate of 10 mV/s in 1 M HCl aqueous solution). This method is a very useful to predict unknown standard potential of compounds because theoretical method is very simple and low-cost. The front orbit theory and Mülliken charges of moleculer explain well on the electrochemical behaviour of cyclic voltammogramm for DPPDF_(R) at glass electrode. DPPDF_(R) can be oxidized by H₂O₂. However, DPPDF_(O) is a weak polar molecule and separated from oil difficultly.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the financial support of the National Science Foundation of China (Grant No. 51175245), the Open Science Foundation for Jiangsu Province Key Laboratory for Chemistry of Low-Dimentional Materials (Grant no. JSKC11091), the Open Science Foundation for Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology (Grant No. JSBEET1207) and the Science Foundation for Huaiyin Normal University (Grant no. 11HSGJBZ13).

TABLE-4										
CALCULATED THERMOCHEMISTRY VALUES, THE ΔrG _{solu} (298.15 K, 1 atm) AND STANDARD ELECTRODE POTENTIAL (E°)										
Compound	DPPDFH _(R)	DPPDFH _(R)	DPPDFH _(O)	DPPDFH _(O)	HBQ	HBQ	BQ	BQ	H ₂ O	H ₂ O
Basis sets	6-31g	6-31++g	6-31g	6-31++g	6-31g	6-31++g	6-31g	6-31++g	6-31g	6-31++g
	(d, p)	(d,p)	(d, p)	(d,p)	(d, p)	(d,p)	(d, p)	(d,p)	(d, p)	(d,p)
G _{solu} (Hartree)	-1033.336331	-1033.345492	-1334.092194	-1334.122231	-382.627684	-382.650561	-381.410899	-381.432291	-76.423076	-76.439470
G _{solu} (KJ/mol)	-181.95	-283.714	-	-	-	-	-	-	-	-
$E^{\circ}(V)$	0.937	1.067	-	-	-	-	-	-	-	-

REFERENCES

- J. Winebrake, J.J. Corbett, E.H. Green, A. Lauer and V. Eyring, *Environ. Sci. Technol.*, 43, 4776 (2009).
- M. Yaseen, M. Shakirullah, I. Ahmad, A.U. Rahman, F.U. Rahman, M. Usman and R. Razzaq, *J. Fuel Chem. Technol.*, 40, 714 (2012).
- 3. V.M. Kogan, P.A. Nikulshin and N.N. Rozhdestvenskaya, *Fuel*, **100**, 2 (2012).
- S.A. Ali, S. Ahmed, K.W. Ahmed and M.A. Al-Saleh, *Fuel Process. Technol.*, 98, 39 (2012).
- J. Bu, G. Loh, C.G. Gwie, S. Dewiyanti, M. Tasrif and A. Borgna, *Chem. Eng. J.*, 166, 207 (2011).
- 6. K.K. Sarda, A. Bhandari, K.K. Pant and S. Jain, Fuel, 93, 86 (2012).
- M. Seredych, C.T. Wu, P. Brender, C.O. Ania, C. Vix-Guterl and T.J. Bandosz, *Fuel*, 92, 318 (2012).
- C.D. Wilfred, C.F. Kiat, Z. Man, M.A. Bustam, M.I.M. Mutalib and C.Z. Phak, *Fuel Process. Technol.*, 93, 85 (2012).
- I. Sharafutdinov, D. Stratiev, I. Shishkova, R. Dinkov, A. Batchvarov, P. Petkov and N. Rudnev, *Fuel*, 96, 556 (2012).
- 10. P. Agarwal and D.K. Sharma, Energy Fuels, 24, 518 (2010).
- 11. W.A.W.A. Bakar, R. Ali, A.A.A. Kadir and W.N.A.W. Mokhtar, *Fuel Process. Technol.*, **101**, 78 (2012).
- 12. X. Chen, D. Song, C. Asumana and G. Yu, J. Mol. Catal. Chem., 359, 8 (2012).
- G. Yu, J. Zhao, D. Song, C. Asumana, X. Zhang and X. Chen, *Ind. Eng. Chem. Res.*, **50**, 11690 (2011).
- 14. W.Y. Liu, Z.L. Lei and J.K. Wang, Energy Fuels, 15, 38 (2001).
- 15. J. Wang, D. Zhao and K. Li, Energy Fuels, 24, 2527 (2010).
- H. Zhang, J. Gao, H. Meng and C.X. Li, *Ind. Eng. Chem. Res.*, 51, 6658 (2012).
- 17. Y. Song, L. Zhang, HuiZhong, D. Shi, J. Xie and G. Zhao, *Spectrochim. Acta A*, **70**, 943 (2008).
- Y.Z. Song, A.F. Zhu, J.X. Lv, G.X. Gong, J.M. Xie, J.F. Zhou, Y. Ye and X.D. Zhong, *Spectrochim. Acta A*, **73**, 96 (2009).

- 19. D.Q. Shi, X.F. Zhu and Y.Z. Song, Spectrochim. Acta A, 71, 1011 (2008).
- 20. Y.Z. Song, Can. J. Chem., 88, 676 (2010).
- 21. A.D. Becke, J. Chem. Phys., 98, 5648 (1993).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian, Inc., Wallingford CT, (2009).
- R. Bonaccorsi, R. Cimiraglia and J. Tomasi, *Comput. Chem.*, 4, 567 (1983).
- J.L. Pascualahuir, E. Silla, J. Tomasi and R.J. Bonaccorsi, *Comput. Chem.*, 8, 778 (1987).
- 25. S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 55, 117 (1981).
- 26. E. Laviron, J. Electroanal. Chem., 52, 355 (1974).
- 27. E. Laviron, J. Electroanal. Chem., 101, 19 (1979).
- 28. F. Wang, Y. Wu, J. Liu and B. Ye, *Electrochim. Acta*, 54, 1408 (2009).
- 29. F. Wang, Y. Xu, J. Zhao and S. Hu, Bioelectrochemistry, 70, 356 (2007).
- 30. Y.H. Wu, X.B. Ji and S.S. Hu, *Bioelectrochemistry*, **64**, 91 (2004).
- D. Dobos, Electrochemical Data, A Handbook for Electrochemists in Industry and Universities; Elsevier Scientific Publishing Company: Amsterdam-Oxford; New York (1975).