
INTRODUCTION

Chinese liquor is one of the famous distilled spirits in the

world and has been consumed for centuries1. As a complex

mixture, it consists of hundreds of flavor compounds present

different concentrations. Among others, various kinds of esters

are the most components and therefore the total ester content

(TEC) is one of the most important physicochemical indexes

of liquor as the price of liquor is closely related to its amount

of esters2,3. Over the years, the test of Chinese liquor mainly

includes sensory test and chromatographic analysis. The former

relies on person's sense of taste and smell to evaluate integrally

liquor flavor and is difficult to ensure scientific and objective

results. Chromatographic analysis is often a time-consuming,

laborious and inexpensive operation4. An ideal method for the

determination of chemical composition in liquor should be

non-invasive, non-destructive and rapid. The application of

spectroscopic techniques in liquor analysis has developed

considerably4-9. Specially, near-infrared (NIR) spectroscopy,

i.e., the electromagnetic spectrum between 750 and 2,500 nm,

offers many advantages including its speed, the absence of or

reduced need for sample pretreatment and the absence of the

Determination of Total Ester Content in Chinese Liquor by Combining

Near-Infrared Spectroscopy and Wavelet-Based Calibration

C. TAN
1,3,*, H. CHEN

2, T. WU
1, Z. LIN

1 and L. WANG
1

1Department of Chemistry and Chemical Engineering and Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University,

Yibin 644007, P.R. China
2Hospital, Yibin University, Yibin 644007, P.R. China
3Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, P.R. China

*Corresponding author: Tel/Fax: +86 831 3551080; E-mail: chaotan1112@163.com

Received: 25 April 2014; Accepted: 1 July 2014; Published online: 26 December 2014; AJC-16566

Chinese liquor is one of the famous distilled spirits in China. How to accurately quantify total ester content of liquor is a problem. The

feasibility of combining near-infrared spectroscopy with a calibration model for total ester content quantization is investigated. One

hundred and thirty-seven samples of commercial bottled liquors were used for experiment. A new calibration procedure called reconstructed

partial least squares, which is a combination of partial least squares, wavelet transform and mutual information, was developed. It is

actually partial least squares modeling in reconstructed original domain coupled with mutual information-induced variable selection in

wavelet domain. Three kinds of calibration procedure were used for comparison. It concluded that, compared to the reference methods,

reconstructed partial least squares can produce better models without increased complexity for an end-user. Even if the proposed reconstructed

partial least squares is only be used to determine the total ester content, it can be a potential tool for near-infrared analysis of other

complex samples.

Keywords: Ester, Liquor, Near-infrared, Wavelet, Mutual information.

use of chemicals. Also, it presents smaller absorption bands

in at least 1 order of magnitude for each successive overtone,

allows the use of more concentrated samples and longer optical

paths than those used in middle-infrared spectroscopy.

In the quantitative application of NIR technique, the

importance of reliable calibration model is indisputable for

prediction of composition contents or characterization of

unknown samples and often determines its availability10-13.

Thus, it is crucial to study the methods of model construction.

In recent years, great effort has been made to improve the

predictive model. These works include spectral pretreatment

techniques, variable selection methods and different robust

strategies. Even if many methods have been developed, the

most commonly used multivariate calibration method is

undoubtedly partial least squares (PLS)14. The partial least

squares can handle datasets even when the number of variables

is much larger than the number of samples. Also, partial least

squares can model weak non-linearity by using a few extra

latent variables. However, care must be taken because training

a partial least squares model with too many factors will tend

to over-fit untrained data. Furthermore, in some situations it

can be an advantage to reduce the number of variables in order
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to, among others, obtain (a) improvement of the model predic-

tions, (b) a better interpretation or (c) lower measurement costs.

Mutual information (MI), a measure from information theory,

has proved to be a powerful criterion measuring variable depen-

dences and been successfully used in variable selection15,16. It

has the unique advantage to be model-dependent and non-

linearity. Model-independent means that no assumption is

made about the model that will be used while nonlinearity

means that the mutual information measures the non-linear

relationships between variables.

In recent years, to improve understanding and prediction

of calibration models, the application of wavelet transform as

a pre-processing step prior to any type of modeling has

attracted widespread attention17. The basis for such approaches

is the concept of multi-resolution, the ability to separate a signal

according to frequency, is one of the important advantages

offered by the wavelet transform18. Chemical spectra measured

from spectroscopic instruments are in fact information that

can considered as a signal composed of various frequency

components, not obviously remarkable in the original domain.

When one applies calibration methods to raw spectra in

general, the final model is based on the highest resolution

level only. This means that it is sometimes difficult to detect

dependencies between the spectrum space and, e.g., the

concentration space of a compound which originate at different

scales. By using wavelet and multi-resolution analysis, it is

possible to capture the information at the different scales

separately and to investigate the contribution of each scale to

the final model. More specifically, wavelet can transform the

original spectrum into the wavelet domain. The corresponding

information can be represented by the wavelet coefficients.

Due to the built-in effect of information concentration, there

are many wavelet coefficients with very small amplitude,

which can be regarded as uninformative. By certain operations,

spectral information can be concentrated into a small number

of variables. Furthermore, since wavelet transform decompose

the spectra according to scale while retaining wavelength

information, features such as overlapping bands, noise or a

variable baseline are often separated into different variables

in the wavelet domain. Thus, it becomes easier to identify

relevant features. Several methods have already been proposed

for selecting the relevant variables in wavelet domain for partial

least squares (PLS). The wavelet transform itself does not

produce a compressed version of the original. Thus, it is often

used by coupling with a variable selection approach in order

to eliminate the wavelet coefficients that do not hold valuable

information.

In the present work, based on partial least squares, wavelet

transform and mutual information-induced variable selection,

a simple and effective calibration procedure is developed for

analyzing the total ester content of liquor by NIR spectroscopy.

It is named reconstructed partial least squares, i.e., partial least

squares modeling in reconstructed original domain coupled

with mutual information-induced variable selection in wavelet

domain. In reconstructed partial least squares, the original

spectra of the training set are first decomposed into a set of

wavelet representations at a depth of scale (level) by action of

the wavelet prism transform. Then, the mutual information

value between each wavelet coefficient variable and the

response variable is calculated, resulting in a mutual infor-

mation spectrum; by retaining a subset set of coefficients with

higher mutual information, an update training set consisting

of wavelet coefficients is obtained and can be reconstructed/

converted back to the original domain. Based on this, a partial

least square (PLS) model can be constructed and optimized.

The optimal wavelet and decomposition level are determined

by experiment. Three kinds of calibration procedure/methods,

i.e., conventional full-spectrum partial least squares in original

domain (FPLS), partial least squares in original domain

coupled with mutual information-induced variable selection

(OPLS) and direct partial least squares in mutual information-

based wavelet coefficients (WPLS), were used for comparison

purpose.

EXPERIMENTAL

Samples collection and reference analysis: One hundred

and thirty-seven samples of commercial bottled liquors belon-

ging to seven brands were purchased in local stores of west

China. Each sample was analyzed using reference methods

for total ester content. Reference analyses were in accordance

with the Official Methods of Analysis for Chinese liquor (GB/

T 10245.5-1989). All analyses were done in duplicate.

Instrument and spectra collection: Liquor bottles were

opened and subsamples were scanned on in transmission mode

(4000-12000 cm-1) using a near-infrared spectrometer coupled

with a automated transmission module (Antaris II, Thermo

fisher, USA). Spectral data collection was made using Vision

software-TQ Analyst. Samples were scanned in a rectangular

curette with a 1 mm path length and temperature equilibrated

at 25 °C for 2 min in the instrument before scanning. Spectral

data were stored as the logarithm of the reciprocal of transmi-

ttance [log (1/T)], at 4 nm intervals. The spectrum of each

sample was the average of 32 successive scans, resulting in

2074 data points/variables for each spectrum. The absorbance

in the region of 8000-12000 cm-1 was very weak.

Mutual information-based variable selection: Variable

selection, also called "feature" or "wavelength" selection when

applied to spectroscopic data. The goal of variable selection

is to identify a subset of spectral variables that produce the

smallest possible errors when used to perform operations such

as making quantitative determinations or discriminating between

dissimilar samples. An optimal way to do variable selection is

to try all combinations of variables and select the best ones.

This sounds simple, but is, in practice, impossible for a number

of reasons. Furthermore, even if it is possible to test all combi-

nations of variables, the risk of over-fitting would be detri-

mental unless the number of samples was much higher than

the number of combinations of variables. Among others, for

these reasons, a number of variable selection methods have

been developed which try to find a good set of variables rather

than the optimal set of variables.

The mutual information (MI) is a statistical measure of

arbitrary dependencies between two variables. Mutual infor-

mation is based on Shannon's information theory and is very

useful in a prediction context. Unlike other parametric esti-

mators, such as the correlation, the mutual information does

not make any assumption about what type of relation could

exist between the variables. It can thus be used in a wide range
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of contexts, including for the selection of variables. More speci-

fically, mutual information enables to assess the amount of

information contained in the candidate variable x that can be

used to predict the response variable y. Mutual information is

zero only if there is no dependence between the two variables.

However, the exact measure of the mutual information is not

possible in practice. Indeed, the exact measure of mutual infor-

mation is possible only when the probability density functions

(PDF) of x and y are known. Often, the PDF are not known

(we only know a few samples, not the distribution of samples)

and must be estimated. mutual information estimators have

thus been developed to compute an approximation of the

mutual information between x and y, i.e., I(x,y), in the finite

sample case. Histograms and kernels may be used for that

purpose. More information about the mutual information

concepts and calibrations are available19,20.

Wavelet transformation: The wavelet transformation

(WT) is a multi-resolutional signal processing tool that has

found several applications in de-noising, feature extraction and

signal compression. Wavelets, as often used as the discrete

wavelet transform (DWT), have been shown to be highly

effective in improving the performance of calibration type

problems in many fields of NIR spectroscopy. The DWT of a

spectrum can be obtained in a fast manner by using a filter

bank. The basic structure of the filter bank consists of a pair

of low-pass and high-pass filters, followed by a down-sampling

operation, which discards one in every two points of the filtering

outcome. The down-sampled output of the low-pass filter,

termed "approximation", is a smoothed version of the original

spectrum at a coarser resolution. The down-sampled output

of the high-pass filter, termed "detail", mainly correspond to

high frequency noise, as well as sharp features of the original

spectrum, such as narrow peaks. Such an operation can be

reapplied to the approximation coefficients up to the set decom-

position levels. The result of the wavelet transform comprises

the final approximation, as well as the detail obtained along

the entire filter bank. With a slight abuse of language, this

result will be hence forth termed "wavelet coefficients". Due

to the finite length of the filters employed in the filter bank,

approximation or detail coefficient in each level corresponds

to a reduced range of wavelengths within the spectrum. Unlike

the Fourier transform, the wavelet transform can use a variety

of different basis functions with different properties. Once the

spectrum is transformed into the wavelet coefficients, it is

convenient to perform variable compression/selection. By

utilizing inverse wavelet transform, the compressed/treated

coefficients can be converted back to its original domain for

constructing model. The theory of wavelets is well established

in chemometrics21,22.

Wavelet-mutual information-reconstructed partial

least squares: Here, we use the newly developed calibration

method, i.e., reconstructed partial least squares (RPLS), which

is based on the wavelet transform and mutual information-

induced variable selection.

RESULTS AND DISCUSSION

All 137 samples were split into two subsets: The training

(calibration) set and the test set. Considering the fact that

the evaluation of a model is valid only if the test set contains

information similar to the training set, a special scheme was

used to avoid possible bias in subset selection. That is, an

algorithm of representative sample selection named SPXY23

(sample set partitioning based on joint x-y distances) for sorting

all samples, followed by an alternative re-sampling with a ratio

of 2/1. That is, one-third of samples were selected into the test

set while the other 2/3 of the samples constituted the training

set. As a result, the training set and the test set consist of 91

and 46 samples, respectively. Basically, the range of the

response (total ester content) in the test set covers the range in

the calibration set.

Based on the determination of total ester content, the

performances of the proposed reconstructed partial least

squares and three other reference methods (FPLS, OPLS and

WPLS) are compared. The wavelet chosen for this study is

'db2' because it has a shape suitable for describing infrared

signal. Also, its advantages have been confirmed by some

researches. When using wavelet transform, which wavelet and

how many coefficients (variables) should be retained is of great

importance and also depends heavily on the task. As far as

multivariate calibration is concerned, one model designer

focuses on maintaining as much valuable information for

predicting the response as possible. In order to give an insight

of how many variables (wavelet coefficients) is enough, Fig. 1

gives the RMSECV (root-mean-squared error of cross vali-

dation) values associated with OPLS, reconstructed partial least

squares and WPLS models as a function of the number of

variables. Despite significant fluctuation, it can be seen in Fig.

1 that using 100 variables is enough and reasonable since using

more variables is useless for reducing the RMSECV of each

kind of model. So, the number of variables is fixed at 100 for

quantitative analysis. The decomposition level is also crucial

in these methods related to wavelet transform. The level is

optimized by using the (RMSECV) as the measure. The

RMSECV values of both reconstructed partial least squares

and WPLS models versus decomposition level are shown in

Fig. 2, implying that the optimal decomposition level is six

for both methods.

In order to analyze the advantages from wavelet transform,

as an example, Fig. 3 represents the original spectra and

the corresponding reconstructed spectra after selecting 100

Fig. 1. RMSECV values associated with OPLS, RPLS and WPLS models

as a function of the number of variables
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Fig. 2. RMSECV values of RPLS and WPLS models versus decomposition level

variables in wavelet domain. As seen in Fig. 3, the reconstructed

spectra highlight some important features, while ignoring some

uninformative parts. Specifically, only the variables in the

region of 4000-5500 cm-1 exhibit significant absorption

strength, which indicating that wavelet transform coupled with

mutual information-induced variable selection have the role

of information collection. The reconstructed partial least

squares seems to be contrary to those cases, which intend to

remove an entire scale for certain purpose and therefore has

the risk of losing an informative component, resulting in

information leakage. Table-1 summarizes the distribution of

the selected 100 wavelet coefficients in various scales/levels.

Clearly, the selected wavelet coefficients at the D1-D3 levels

account for about 90 % of the total number and the approxi-

mation coefficients are never selected. Based on this, it is

possible to prepare a so-called scalogram (not shown here), in

which each tile represents the area covered by a wavelet basis

Fig. 3. Original spectra and the corresponding reconstructed spectra after

selecting 100 variables in wavelet domain

function in time-frequency domain. Also, it is convenient to

observe the positions of the selected wavelet coefficients or

to locate the most important regions in the original spectra

influenced by these coefficients.

The performances of the different models are evaluated

in terms of root mean square error of calibration (RMSEC) and

the root mean square error of prediction (RMSEP), correspon-

ding to the training set and the test set. Table-2 summarizes

the performance comparison of four kinds of optimal models

and the mean of latent variables (Lvs) of 100 runs. Each time,

the optimal Lvs is corresponding to the lowest RMSECV. It is

clear in Table-2 that the OPLS model has a lower RMSEC/

RMSECP compared to the FPLS model. Both reconstructed

partial least squares and WPLS enable to produce better models

than OPLS. Also, even if the WPLS model shows lower RMSEC

values than the reconstructed partial least squares model, it

has a higher RMSEP values, implying that a possible over-

fitting problem exists for the WPLS model. It seems that the

reconstructed partial least squares model hold better generali-

zation ability. For further comparison of the prediction results

of OPLS, reconstructed partial least squares and WPLS, Fig. 4

illustrate the actual/measured vs. predicted points for the test

set. In this plot, the data points will fall on the diagonal if the

model fits the data perfectly. From deviation from the diagonal,

it is able to visually analyze the performance of models. As

seen in these plots, the points associated to either reconstructed

partial least squares or WPLS models fall on the diagonal more

compactly than OPLS, confirming their better predictive

ability. It could be explained that partial least squares is actually

a linear method, although it may handle mild non-linearity by

including extra latent variables into the model. The number

of esters in liquors, i.e., total esters, is a mixture containing a

variety of esters compositions. Furthermore, Chinese liquor

is a solid fermented product containing many other substances

such as fusel oil, acids and other organics. A NIR spectrum is

composed of overtones and combinations of fundamental

vibrations of corresponding organic groups from the mid-

infrared. Therefore, the relationship between the NIR spectra

and total ester content is maybe complicated which is more

inclined to non-linear rather than linear. It seems that recons-

tructed partial least squares combine the advantages from

wavelet multi-resolution analysis and mutual information-

induced variable selection. So, reconstructed partial least

squares can construct superior model to the reference methods.

TABLE-2 
A COMPARISON OF THE MEAN RESULTS OF FOUR 

CALIBRATION METHODS FROM 100 RUNS 

Index FPLS OPLS WPLS RPLS 

RMSECa 0.5105 0.3833 0.3045 0.3537 

RMSEPb 0.5283 0.4711 0.4226 0.3659 

LVsc 16 13 14 14 

 

TABLE-1 
DISTRIBUTION OF SELECTED 100 WAVELET COEFFICIENTS IN VARIOUS SCALES/LEVELS 

Level A D6 D5 D4 D3 D2 D1 

Selected coefficients 0 1 1 9 23 33 33 

Total coefficients 35 35 67 132 261 520 1038 

Percentage  0 1 1 9 23 33 33 
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Fig. 4. Scatter plot of predicted vs. actual value of the test set for OPLS,

RPLS and WPLS models

In fact, when a calibration/regression method is applied

to raw spectra in the wavenumber domain, the final model is

based on the highest resolution level only. This means that is

it is difficult to detect dependencies between the spectrum

spaces, e.g., the concentration space of total ester content,

which maybe originates from different scales associated to

the peak shape, as introduced above. By using wavelet-based

regression, it is possible to make full use of the information

distributed in various frequency bands. It may be just because

of this that reconstructed partial least squares performs well.

In fact, the near-infrared spectra are inherently multiscale. For

example, noise usually locates in high-frequency region while

background and drifts often appear at the lowest frequency

ranges, i.e., approximation coefficients.

Compared to partial least squares, although the proposed

reconstructed partial least squares method differs in the

modeling process, the modeling results were identical. That

is, a partial least squares-based model can actually represented

as a b-coefficient vector with the same length as the number

of spectral channels. What should be stressed is that, to predict

the response (total ester content) of a new sample, the only

requirement is to multiply its spectrum with b-coefficient

vector. In other words, once the reconstructed partial least

squares model is established, it can be performed for prediction

within the same time. It is only the process of constructing a

model that involves variable selection and wavelet transform.

From the perspective of application, the reconstructed partial

least squares does not increase any complexity of the calibra-

tion while enhancing its performance.

Conclusion

It is verified that NIR spectroscopy coupled with the

developed methods, i.e., reconstructed partial least squares, is

a suitable tool for quantification of the most important liquor

parameter, i.e., total ester content. This method combines the

advantage of wavelet multi-resolution with mutual information

for capturing the non-linear relationship. So, it enables to

produce better models without increased complexity for an

end-user, compared to three reference methods. Even if the

proposed reconstructed partial least squares is only be used to

determine the total ester content, it can be a potential tool for

near-infrared analysis of other complex samples. The idea of

considering the inherent local features of spectral signals in

both time and frequency domains, instead of in a single domain,

may be of great potential for developing future calibration

methods.
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