

Theoretical Studies on Vibrational Spectra, Detonation Properties and Stabilities of Polynitroadamantanes

P. LIAN¹, W.P. LAI^{1,*}, Y.N. LI¹, X.J. WANG¹, S.J. QIU¹, J. LUO², J. LV¹ and B.Z. WANG¹

¹Xi'an Modern Chemistry Research Institute, Xi'an, P.R. China ²School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R.China

*Corresponding author: Tel: +86 29 88291050; E-mail: laneph@126.com

Received. 50 November 2015, Accepted. 10 April 2014, Tublished online. 20 December 2014, AJC-10516	Received: 30 November 2013: Accepted: 10 April 2014:	Published online: 26 December 2014:	AJC-16518
--	--	-------------------------------------	-----------

To look for high energy density compounds (HEDCs), sixteen polynitroadamantanes were designed and their properties were studied. The assigned infrared spectra of polynitroadamantanes were obtained at the DFT-B3LYP/6-31G^{**} level. The frequencies of symmetry stretching vibration of nitro group for polynitroadamantanes have a bathochromic shift with the number of nitro group. However, the frequencies of asymmetry stretching vibration have a contrary trend. The detonation velocity, pressure and heat of 16 polynitroadamantanes were estimated by the Kamlet-Jacobs formula. The stabilities of polynitroadamantanes were studied by the bond dissociation energy and the energy level difference calculation. The number of the nitro group is in direct proportion to the detonation properties. Conversely, it is in inverse proportion to the stability of polynitroadamantanes. Among the polynitroadamantanes having the same number of nitro group links with a methylene group has better properties and is unstable than that the nitro group links with a methylidyne group. Consequently, we should balance the stability with energy and density when a new molecule is designed.

Keywords: Properties, Stability, Polynitroadamantanes, Density functional theory.

INTRODUCTION

Adamantane (**Scheme-I**) is one cage hydrocarbon compound, which is composed of 10 carbon atoms and 16 hydrogen atoms with a large density and a high heat of formation. Recently, one type of adamantane derivative, polynitroadamantane, which possess large energy-density and excellent stability, has being extensively studied¹⁻⁸.

Gilbert and Jack⁹ calculated the density, heat of formation and detonation pressure for a series of polynitroadamantanes, which the number of nitro groups range from 2 to 16. Pivina *et al.*¹⁰ predicted the properties of the isomers of hexanitroadamantane. Sÿkare and Succeska¹¹ estimated the detonation parameters for 1,3,5,7-tetranitroadamantane. All above detonation properties are calculated by using the group additivity method, which cannot differentiate the isomers of polynitroadamantanes. Xu *et al.*¹² investigated the vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanisms for polynitroadamantanes with the number of nitro groups ranging from 1 to 10 by using DFT-B3LYP /6-31G^{*} method and Kamlet-Jacobs equation. They recommended 1,2,3,4,5,6,7,8,9,10-polynitroadamantane as the target of HEDM with insensitivity.

In the present work, 16 polynitroadamantanes compounds (Table-1) are designed. Subsequently, the molecular orbit, IR

spectrum, density, enthalpy of formation, detonation properties and bond dissociation energy are calculated on the basis of optimized structures and the stability is further analyzed.

METHOD OF CALCULATIONS

DFT B3LYP method with 6-31G^{**} basis set was carried out to optimize structures and calculate molecular orbits and IR spectra for 16 polynitroadamantanes using Gaussian 09 (A.02) program¹³. The molar volume of each molecule was calculated by the Monte-Carlo method, followed by formula (1) to obtain its density. The gas phase enthalpies of formation of polynitroadamantanes were derived from an isodesmic reaction. Subsequently, the sublimation enthalpies were calculated by formulae (2)-(6) to further achieve their enthalpies of formation for the solid phase.

TABLE-1			
16 DESIGNE	ED POLYNITROADAMANTANES COMPOUNDS		
C1	1,3,5,7-Tetranitroadamantane		
C2	2,4,6,8-Tetranitroadamantane		
C3	2,2,4,4-Tetranitroadamantane		
C4	1,2,3,5,7-Pentanitroadamantane		
C5	2,4,6,8,9-Pentanitroadamantane		
C6	1,2,3,4,5,7-Hexanitroadamantane		
C7	1,2,3,5,6,7-Hexanitroadamantane		
C8	2,4,6,8,9,10-Hexanitroadamantane		
C9	2,2,4,4,6,6-Hexanitroadamantane		
C10	1,2,3,4,5,6,7-Heptanitroadamantane		
C11	2,2,4,6,8,9,10-Heptanitroadamantane		
C12	1,2,3,4,5,6,7,8-Octanitroadamantane		
C13	2,2,4,4,6,6,8,8-Octanitroadamantane		
C14	1,2,3,4,5,6,7,8,9-Nonanitroadamantane		
C15	2,2,4,4,6,6,8,8,9-Nonanitroadamantane		
C16	1,2,3,4,5,6,7,8,9,10-Decanitroadamantane		

The isodesmic reaction is as following:

 $C_{10}H_{16}(g)(adamadntane) + nHNO_3(g)$

$$\rightarrow C_{10}H_{^{(16\text{-}n)}}N_nO_{2n}(g) \text{ (PNA)} + nH_2O(g)$$

$$\rho_{\text{crystal}} = a \left(\frac{M}{V_{\text{m}}}\right) + b(\upsilon \sigma_{\text{tot}}^2) + c \tag{1}$$

$$\Delta H_{sub}(298 \text{ K, kcal/mol}) = aA^2 + b(\upsilon \sigma_{tot}^2)^{0.5} + c$$
 (2)

$$\sigma_{tot}^{2} = \sigma_{+}^{2} + \sigma_{-}^{2} = \frac{1}{m} \sum_{i=1}^{m} [V^{+}(r_{i}) - \overline{V}_{S}^{+}]^{2} + \frac{1}{n} \sum_{j=1}^{n} [V^{-}(r_{j}) - \overline{V}_{S}^{+}]^{2}$$
(3)

$$\upsilon = \frac{\sigma_+^2 \sigma_-^2}{\left[\sigma_{\text{tot}}^2\right]^2} \tag{4}$$

$$\overline{V}_{s}^{+} = \frac{1}{m} \sum_{i=1}^{m} V^{+}(r_{i})$$
(5)

$$\bar{\mathbf{V}}_{\rm S}^{-} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{V}^{-}(\mathbf{r}_j) \tag{6}$$

The detonation velocity, detonation pressure and detonation heat were estimated by the Kamlet-Jacobs formula¹⁴.

The weakest bond in each molecule was confirmed by the structure analysis and its bond dissociation energy (BDE) was calculated¹⁵.

RESULTS AND DISCUSSION

IR spectrum closely related with the structure of a compound and is the external manifestation of a structure. The frequencies of symmetry and asymmetry stretching vibration for 16 polynitroadamantanes are shown in Table-2. It is shown that the frequencies of symmetry stretching vibration of nitro group for polynitroadamantanes decrease (a bathochromic shift) with the increasing of nitro group numbers. However, the frequencies of asymmetry stretching vibration of nitro group for polynitroadamantanes increase (a hypsochromic shift) with the number of nitro group. The main reason may be an inductive effect. As a strong electron withdrawing group, nitro group could draw the electron orbit of another nitro group

AND ASYMMETRY STRETCHING VIBRATION FOR NO2			
Compd.	Symmetry stretching vibration	Asymmetry stretching vibration	
C1	1291, 1289	1503, 1502, 1499	
C2	1293	1509, 1502, 1497	
C3	1288, 1242	1530, 1517	
C4	1290, 1286, 1284	1508, 1504	
C5	1289, 1287, 1282	1527, 1511, 1505, 1498	
C6	1286, 1283	1518, 1511	
C7	1283, 1281, 1277	1527, 1523, 1519	
C8	1290, 1289, 1279	1534, 1533, 1514, 1503	
C9	1239, 1229	1536, 1527, 1519	
C10	1279	1528, 1514	
C11	1287	1540, 1539, 1533	
C12	1276, 1275, 1272	1540, 1532, 1526	
C13	1246	1538, 1535, 1535	
C14	1281, 1278, 1267	1557, 1549, 1544, 1539, 1529	
C15	1275	1556, 1545, 1540	
C16	1269, 1250	1564, 1557, 1550, 1545, 1535	

TABLE-2 CALCULATED FREQUENCIES (cm⁻¹) OF SYMMETRY

at *ortho*-position to the nitrogen atom which should concentrate on oxygen atom. As a result, the electron density of N=-Oincreased. Among the polynitroadamantanes having the same number of nitro group, one which the nitro group links with a methylene group has slightly bigger frequency of asymmetry stretching vibration of nitro group than that the nitro group links with a methylidyne group. It is because that alkyl, as a weak electron releasing group, could repel the electron orbit of nitro group to the oxygen atom. As a result, the electron density of N=-O decreased.

Density and detonation property: Detonation velocity (D), detonation pressure (P) and detonation heat (H) are the important parameters to evaluate the performances of energetic compounds. However, density (ρ) and enthalpy of formation ($\Delta H_{\rm f}$) are of importance to calculate above detonation properties using the Kamlet-Jacobs formula. The properties for 16 polynitroadamantanes were listed in Table-3.

$T \Delta BI E_{-3}$
IADEL-5
DENSITIES (g cm ⁻³), ENTHALPY OF FORMATION
(kJ mol ⁻¹), DETONATION VELOCITY (m s ⁻¹), DETONATION
PRESSURE (GPa), AND DETONATION HEAT
(kJ kg ⁻¹) FOR 16 POLYNITROADAMANTANES

Compd	Density	Enthalpy of	Detonation	Detonation	Detonation
compu.	Density	formation	velocity	pressure	heat
C1	1.59	-374.29	6615	17.96	4652
C2	1.84	-342.84	7439	25.11	4751
C3	1.83	-238.97	7450	24.86	5080
C4	1.83	-358.83	7696	26.53	5143
C5	1.93	-345.16	8006	29.62	5181
C6	2.00	-336.77	8527	34.27	5541
C7	1.87	-345.35	8119	29.91	5520
C8	2.08	-342.32	8768	37.03	5528
C9	1.94	-226.08	8443	33.03	5814
C10	1.97	-315.59	8684	35.25	5858
C11	2.02	-290.14	8864	37.24	5915
C12	1.98	-261.62	8940	37.46	6184
C13	2.07	-152.65	9313	41.67	6404
C14	2.00	-215.25	9183	39.75	6441
C15	2.04	-64.52	9415	42.24	6720
C16	2.12	-146.86	9749	46.24	6697

It can be seen that the density, detonation velocity, pressure and heat are in direct proportion to the number of the nitro group. Among the polynitroadamantanes with the same number of nitro group, one which the nitro group links with a methylene group has better properties than that the nitro group links with a methylidyne group. In other words, for the sake of a higher energy density, we should increase the number of nitro group and link the nitro group with a methylene group to the best of our abilities.

Bond dissociation energy and stability: It is absolutely critical that a compound is stable and safe for use. Xiao et al.¹⁵ reported that bond dissociation energy can be used to estimate the stability of a high energy density compound. The energy level difference, length and dissociation energy of the weakest C-N bond for 16 polynitroad-amantanes are listed in Table-4. It can be seen that the number of nitro group is in inverse proportion to the energy level difference and bond dissociation energy and in direct proportion to the length of the weakest C-N bond. It indicates that poly-nitroadamantanes' stabilities decrease with the increasing of the nitro group number. Among the polynitroadamantanes with the same number of nitro group, one which the nitro group links with a methylene group has lower energy level difference and bond dissociation energy than that the nitro group links with a methylidyne group. However, an opposite instance occurs in the weakest C-N bond length. In other words, for the sake of polynitroadamantanes' stabilities, we should decrease the nitro group and link the nitro group with a methylidyne group. It is similar to the most energetic compounds that the stability of polynitroadamantanes conflict with its energy and density. Consequently, we should balance the stability with energy and density when a new molecule is designed.

TABLE-4 ENERGY LEVEL DIFFERENCE (ev), LENGTH (Å) AND DISSOCIATION ENERGY (kJ mol⁻¹) OF THE WEAKEST C-N BOND FOR 16 POLYNITROADAMANTANES

	Energy level	Weakest C-N bond		
Compd.	difference	Bond	Length	Bond dissociation
~ .		~		energy
C1	5.410	$C_{5}-N_{23}$	1.536	237.05
C2	5.387	$C_1 - N_{23}$	1.533	237.16
C3	4.805	C20-N29	1.567	133.74
C4	5.305	C ₁₁ -N ₂₅	1.542	218.87
C5	5.231	$C_1 - N_{22}$	1.534	230.33
C6	5.190	C ₁₄ -N ₂₁	1.544	214.67
C7	5.221	C ₁₂ -N ₁₉	1.542	215.18
C8	5.110	$C_1 - N_{21}$	1.533	220.49
C9	4.824	C ₁ -N ₂₇	1.568	110.85
C10	5.141	C ₅ -N ₁₇	1.545	194.43
C11	4.293	$C_1 - N_{38}$	1.565	133.39
C12	4.792	$C_4 - N_{19}$	1.549	196.42
C13	4.783	C12-N40	1.569	101.27
C14	4.959	C16-N26	1.555	171.11
C15	4.264	C12-N36	1.587	47.65
C16	4.881	C ₉ -N ₁₇	1.567	161.02

Conclusion

It can be seen from above results that the frequencies of symmetry stretching vibration of nitro group for polynitroadamantanes have a bathochromic shift with the increasing numbers of nitro group. However, the frequencies of asymmetry stretching vibration have a contrary trend. The number of the nitro group is in direct proportion to the detonation properties. Conversely, it is in inverse proportion to the stability. Among the polynitroadamantanes with the same number of nitro group, one which the nitro group links with a methylene group has better properties and is unstable than that the nitro group links with a methylidyne group. Consequently, we should balance the stability with energy and density when a new molecule is designed.

REFERENCES

- 1. G.W. Smith and H.D. Williams, J. Org. Chem., 26, 2207 (1961).
- 2. G.A. Olah and H.C.H. Lin, J. Am. Chem. Soc., 93, 1259 (1971).
- 3. G.P. Sollott and E.E. Gilbert, J. Org. Chem., 45, 5405 (1980).
- 4. T.G. Archibald and K. Baum, J. Org. Chem., 53, 4645 (1988).
- P.R. Dave, M. Ferraro, H.L. Ammon and C.S. Choi, J. Org. Chem., 55, 4459 (1990).
- 6. R.D. Paritosh and F.N.J. Little, US Patent 5202508 (1993).
- P.R. Dave, T. Axenrod, L. Qi and A. Bracuti, J. Org. Chem., 60, 1895 (1995).
- 8. F. Wang, X.J. Xu and H.M. Xiao, Acta Chim. Sin., 61, 1939 (2003).
- 9. P.S. Gilbert and A. Jack, J. Energ. Mater., 45, 5 (1986).
- T.S. Pivina, V.V. Shcherbukhin, M.S. Marina and N.S. Zefirov, *Pro*pellants Explos. Pyrotech., 20, 144 (1995).
- 11. D. Sÿkare and M. Succeska, Croat. Chem. Acta, 71, 765 (1998).
- X.J. Xu, H.M. Xiao, X.D. Gong, X.H. Ju and Z.X. Chen, J. Phys. Chem. A, 109, 11268 (2005).
- 13. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazvev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
- 14. M.J. Kamlet and S. Jacobs, J. Chem. Phys., 48, 23 (1968).
- H.M. Xiao, X.J. Xu and L. Qiu, in ed.: H. Huang, Gao Neng Liang Mi Du Cai Liao De Li Lun She Ji, Science Press, Beijing Vol. 1, Chap. 3, p. 19 (2008) (in Chinese).