Asian Journal of Chemistry; Vol. 27, No. 1 (2015), 98-100 # **ASIAN JOURNAL OF CHEMISTRY** http://dx.doi.org/10.14233/ajchem.2015.16730 # Synthesis of 1-Alkyl-2-chloromethylbenzimidazole Under Green Conditions S. Srinivas Rao*, Ch. Venkata Ramana Reddy and P.K. Dubey Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad College of Engineering Kukatpally, Hyderabad -500 085, India *Corresponding author: E-mail: seenu604@gmail.com Received: 20 November 2013; Accepted: 27 January 2014; Published online: 26 December 2014; AJC-16514 A green approach for the synthesis of 1-alkyl-2-chloromethylbenzimidazoles (3) ($R^1 = CH_3$, C_2H_5 , CH_2Ph) under, different conditions has been developed from 2-chloromethylbenzimidazole (2) by reaction with an alkylating agent (*i.e.* DMS, DES, PhCH₂Cl) by physical grinding or by using green solvent like PEG-600 or by using micro-wave irradiation technique. Keywords: Green synthesis, Grinding, Microwave, N-alkyl-2-chloromethylbenzimidazole, Benzimidazole. #### INTRODUCTION Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest¹. Benzimidazoles are an important class of bioactive molecules in the field of drugs and pharmaceuticals². 2-Mercaptobenzimidazole derivatives having substitution either at the nitrogen or sulfur are reported to exhibit a broad spectrum of biological activity³⁻⁸. Verma *et al.*⁹ reported that N-methyl-*o*-phenylenediamine on treatment with chloro acetic acid in aq. HCl under reflux for 1 h gave 1-methyl-2-chloromethylbenzimidazole in 80-82 % yield. Flosi *et al.*¹⁰ described that 1-methyl-1*H*-benzimidazole-2-carbaldehyde on treatment with diisobutylaluminium hydride in THF for 1 h followed by chlorination with SOCl₂ in dichloromethane gave 1-methyl-2-chloromethylbenzimdazole. In continuation of our earlier studies on alkylation of 2-acetylbenzimidazole¹¹ and thiolation of N-methyl-2-chlorobenzimidazole¹², we now wish to report on alkylation of 2-chloromethylbenzimidazole using green methods. ## EXPERIMENTAL Melting points were determined in open capillaries in sulfuric acid bath and are uncorrected. IR spectra were recorded with Jasca FT-IR 5300. ¹H NMR and spectra were recorded in CDCl₃/DMSO using Varian 400-MHz instrument. Mass spectra were recorded on an Agilent LC-MS instrument giving only M⁺ values in Q + 1 mode. Thin-layer chromatography (TLC) analyses were carried out on glass plates coated with silica gel GF-254 and visualization was achieved using iodine vapours or UV lamp. Experiments under microwave irradiation were carried out by using the commercially available CEM Discover Microwave Reactor. Synthesis of 1-alkyl-2-chloromethylbenzimidazoles (3) (R_1 = CH_3 , C_2H_5 , CH_2Ph) from 2-chloromethylbenzimidazole (2) **Physical grinding method:** A mixture of **2** (10 mM), alkylating agent (10 mM) and K_2CO_3 (1.38 g, 10 mM) was ground together for about 10-15 min in a mortar with a pestle at room temperature to obtain a homogeneous mixture. The completion of the reaction was monitored by TLC on silica gel-G plates using samples of the starting material and authentic target compounds as references. The mixture was then treated with ice-cold water (about 30-40 mL). The separated solid was filtered, washed with water (2 × 10 mL) and dried to obtain crude **3a-c**. Recrystallization of the crude product from ethyl acetate gave pure **3a-c**. IR, 1 H NMR and LC-MS spectra for the compounds **3a-c** were found to be in agreement with the structures assigned to them. Yields are shown in Table-1. In PEG-600: A mixture of 2 (10 mM), alkylating agent (10 mM) and PEG-600 (20 mL) was heated on a steam-bath at 100 °C for 3 h. At the end of this period, the mixture was cooled to room temperature and poured into ice-cold water (about 50 mL). The separated solid was filtered, washed with water (2×10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure 3a-c, identical with the same products obtained above. Yields are shown in Table-1. **Under microwave condition:** A mixture of **2** (10 mM) and alkylating agent (10 mM) was taken in a 10 mL CEM-reaction tube sealed by rubber stopper and subjected to microwave irradiation for 2 min in a commercial microwave | TABLE-1 | |--| | PREPARATION OF COMPOUND 3 FROM COMPOUND 2 UNDER DIFFERENT GREEN CONDITIONS | | | | | | Methods | | | | | | | | | |--------|----|----------------------|---------|------------|--------------|---------------|------------|------------|---------------|-----------------------|------------|---------------| | | | | | Ph | ysical grind | ling | PEG-600 | | | Microwave irradiation | | | | S. No. | SM | Reagent | Product | Time (min) | Temp. (°C) | Yield*
(%) | Time (min) | Temp. (°C) | Yield*
(%) | Time (min) | Temp. (°C) | Yield*
(%) | | | | DMS | | 10-15 | RT | 78 | 180 | 100 | 68 | 2 | RT / 450 W | 80 | | | | DES | 3b | 10-15 | RT | 74 | 180 | 100 | 72 | 2 | RT / 450 W | 83 | | | | PhCH ₂ Cl | 3c | 10-15 | RT | 81 | 180 | 100 | 66 | 2 | RT / 450 W | 78 | m.p. of **3a:** 118-22 °C (Lit. 9,10 m.p. 116-20 °C) m.p. of **3b:** 102-104 °C (Lit. 9,10 m.p. 98-102 °C) *Yield refers to isolated crude product only m.p. of **3c:** 84-89 °C (Lit. 9,10 m.p. 86-89 °C) reactor. After that, the tube was cooled and the completion of reaction was checked by TLC. Then the reaction mixture was poured into ice-cold water (50 mL). The separated solid was filtered, washed with water (2×10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure 3a-c, identical with the same products obtained above. Yields are shown in Table-1. #### RESULTS AND DISCUSSION Condensation of o-phenylenediamine (1) with chloroacetic acid in 4N HCl under reflux for 3 h gave the known 2-(chloromethyl)-1H-benzimidazole (2). Reaction of 2 with each of dimethyl sulphate (DMS), diethyl sulphate (DES) and benzyl chloride (PhCH₂Cl) in the presence of K₂CO₃, by a simple physical grinding of the reaction mixture in a mortar with a pestle under solvent-free conditions for 10-15 min at room temperature, followed by processing, gave, respectively 1-methyl-2-chloromethylbenzimidazole $\bf 3a$ (i.e., $\bf 3$, $\bf R$ = CH₂CH₃) and 1-benzyl-2-chloromethylbenzimidazole $\bf 3c$ (i.e., $\bf 3$, $\bf R$ = CH₂Ph) as the products identical with the ones reported in the earlier methods $\bf 9.10$ in all respects (m.p. m.m.p. and co-tlc analysis). The reaction was also carried out in PEG-600 as the green solvent. Thus, heating a mixture of $\bf 2$ with an alkylating agent in PEG-600 for 3 h without the use of any added base, followed by simple processing, gave, respectively $\bf 3a$ (*i.e.*, $\bf 3$, $\bf R$ = $\bf CH_3$), $\bf 3b$ (*i.e.*, $\bf 3$, $\bf R$ = $\bf CH_2CH_3$) and $\bf 3c$ (*i.e.*, $\bf 3$, $\bf R$ = $\bf CH_2Ph$) identical with the same products obtained above (**Scheme-I**). Compound **3** could also be prepared by an alternative, green method. Thus, **2** with an alkylating agent and K_2CO_3 as a base under microwave irradiation at RT conditions for 2 min and subsequent processing gave, respectively **3a** (*i.e.*, **3**, R = CH₃), **3b** (*i.e.*, **3**, R = CH₂CH₃), **3c** (*i.e.*, **3**, R = CH₂Ph) identical with the products obtained above (**Scheme-I**). #### Conclusion In conclusion, we have developed a green approach for the synthesis of 1-alkyl-2-chloromethylbenzimidazoles under different conditions. # **ACKNOWLEDGEMENTS** The authors are indebted to the authorities of Jawaharlal Nehru Technological University Hyderabad, India for providing the research facilities. $3a, R=CH_3; 3b, R=C_2H_5; 3c, R=CH_2Ph$ Scheme-I ## REFERENCES - (a) G.L. Gravatt, B.C. Baguley, W.R. Wilson and W.A. Denny, *J. Med. Chem.*, 37, 4338 (1994); (b) J.S. Kim, B. Gatto, C. Yu, A. Liu, L.F. Liu and E.J. LaVoie, *Eur. J. Med. Chem.*, 39, 992 (1996); (c) T. Roth, M.L. Morningstar, P.L. Boyer, S.H. Hughes, R.W. Buckheit and C.J. Michejda, *J. Med. Chem.*, 40, 4199 (1997); (d) D.A. Horton, G.T. Bourne and M.L. Smythe, *Chem. Rev.*, 103, 893 (2003). - (a) G.L. Gravatt, B.C. Baguley, W.R. Wilson and W.A. Denny, *J. Med. Chem.*, 37, 4338 (1994); (b) B. Jayashankara, *ARKIVOC*, 75 (2008); (c) T. Roth, M.L. Morningstar, P.L. Boyer, S.H. Hughes, R.W. Buckheit and C.J. Michejda, *J. Med. Chem.*, 40, 4199 (1997). - H. Hasegawa, N. Tsuda and M. Hasoya, Japanese Patent, 72,55,198 (1974); Chem. Abstr., 156308 (1975). - G. Rovnyak, V.L. Narayana, R.D. Haugwitz and C.M. Cimarusti, US Patent, 3,927,014 (1975); Chem. Abstr., 84, 105596m (1975). - 5. S.C. Bell and P.H. Wei, J. Med. Chem., 19, 524 (1976). - 6. D.R. Graber, R.A. Morge and J.C. Sih, J. Org. Chem., 52, 4620 (1987). - N.I. Korotkikh, G.F. Raenko and O.P. Shvaika, Chem. Heterocycl. Comp., 31, 359 (1995). - N.I. Korotkikh, A.F. Aslanov and G.F. Raenko, Russ. J. Org. Chem., 31, 721 (1995); Chem. Abstr., 18833 (1997). - R.K. Verma, R. Mall, P. Ghosh and V. Kumar, Syn. Comm., 43, 1882 (2013). - W.J. Flosi, D.A. DeGoey, D.J. Grampovnik, H. Chen, L.L. Klein, T. Dekhtyar, S. Masse, K.C. Marsh, H.M. Mo and D. Kempf, *Bioorg. Med. Chem.*, 14, 6695 (2006). - 11. P.K. Kumar and P.K. Dubey, Asian J. Chem., 24, 3249 (2012). - S.S. Rao, P.K. Dubey and Y.B. Kumari, *Indian J. Chem.*, 52B, 1210 (2013)