

# Analysis of Physical and Thermodynamic Properties of Poly(2-cyclopentyliden-1,3-dioxolan-4-ylmethylmethacrylate-*co*-styrene) (CPDMMA-ST) Polymer Using Inverse Gas Chromatography

M. HAMDI KARAGÖZ<sup>1,\*</sup>, ADNAN KALKAN<sup>1</sup> and ZÜLFIYE ILTER<sup>2</sup>

<sup>1</sup>Department of Chemistry, Faculty of Science, Yüzüncü Yil Üniversity, Van, Turkey <sup>2</sup>Department of Chemistry, Faculty of Science, Firat Üniversity, Elazig, Turkey

\*Corresponding author: Fax: +90 432 2251802; Tel: +90 5303607023; E-mail: mhkaragoz@yahoo.com.tr

| Received: 31 March 2015; | Accepted: 11 May 2015; | Published online: 29 August 2015; | AJC-17503 |
|--------------------------|------------------------|-----------------------------------|-----------|
|                          |                        |                                   |           |

In this study, thermodynamic and physical properties of poly(2-cyclopentyliden-1,3-dioxolane-4-yl-methylmethacrylate-*co*-styrene) (%55CPDMMA-%45ST) were investigated using inverse gas chromatography. Two groups of alcohols and alkanes with different chemical natures and polarities were used to determine certain properties of (CPDMMA-ST)-solute systems. The specific retention volume ( $V_g^0$ ), glass transition temperature ( $T_g$ ), adsorption enthalpy ( $\Delta H_a$ ), the sorption enthalpy ( $\Delta H_i^s$ ), sorption free energy ( $\Delta G_i^s$ ), sorption entropy ( $\Delta S_i^s$ ), weight fraction activity coefficients of solute probes at infinite dilution ( $\Omega_1^{\circ\circ}$ ), partial molar enthalpy of solute probes at infinite dilution ( $\Delta H_i^s$ ) and Flory-Huggins interaction parameters ( $\chi_{12}^{\circ\circ}$ ), between polymer and solvents were determined in the temperature range of 313-473 K. In addition, the solubility parameters of CPDMMA-ST at infinite dilution was determined by plotting the graph of [ $\delta_1^2$ -( $\Delta G_1^{\circ\prime}/V_1$ )] *versus* solubility parameters ( $\delta_1$ ), of probes.

Keywords: Polymer, Inverse gas chromatography, Poly(2-cyclopentyliden-1,3-dioxolan-4-yl-methylmethacrylate-co-styrene).

# INTRODUCTION

Inverse gas chromatography (IGC) is a useful method for the studying certain thermodynamic and physical properties of (polymer-solute) systems. Thus, inverse gas chromatography has been used extensively to study the structure of polymers, the interactions of various liquids and gases with polymeric materials and to investigate polymer-polymer miscibility<sup>1-5</sup>. Furthermore, inverse gas chromatography is a reliable method for the characterization of amorphous and semi crystalline polymers. The method is simple, fast and economical and provides valuable thermodynamic information for the characterizing of polymeric substances.

Inverse gas chromatography was developed by Smidsord and Guillet<sup>6</sup> and has been applied to many polymeric systems. In addition, inverse gas chromatography has been used to provide information regarding polymer-solvent and polymerpolymer systems, including solubility parameters, interaction parameters, diffusion constants, enthalpies of mixing, surface energies and areas, adsorption isotherms, glass transition temperatures, melting point temperatures and degrees of crystallinity. Furthermore, inverse gas chromatography is capable of obtaining information on the physicochemical properties, structure and chemical interactions of macromolecules<sup>7-14</sup>. Dipaola-Baranyi and Guillet<sup>15</sup> have shown that inverse gas chromatography can serve as a simple method for estimating the solubility parameters of polymers when using a polymer as a the stationary phase.

In this study, we examined the polymer-solvent interaction parameters and the solubility parameters in terms of the thermodynamic and physical properties of poly(2-cyclopentyliden-1,3-dioxolane-4-yl-methyl methacrylate-co-styrene) (CPDMMA-ST) by using inverse gas chromatography in the temperatures from 60-200 °C.

### **Data reduction**

Probe specific retention volumes  $(V_g^0)$  are calculated from the following standard chromatographic relation<sup>16</sup>:

$$V_{g}^{0} = (F \times 273.2 \times t_{r}) / W \times T \times 3/2 \times \{[(P_{i}/P_{0})^{2} - 1]/[(P_{i}/P_{0})^{3} - 1]\}$$
(1)

where  $t_r$  is the retention times of probe, F is the flow rate of the carrier gas measured at room temperature, W is the mass of the polymeric stationary phase, T is the column temperature,  $P_i$  and  $P_0$  are inlet and outlet pressures, respectively.

For the probe, the molar heat enthalpy  $(\Delta H_1^s)$  and the molar free energy  $(\Delta G_1^s)$  of sorption that are probe absorbed by the polymer are given by the following equation:

$$\Delta H_1^{\ s} = -R \partial V_g^{\ 0} / \partial (1/T) \tag{2}$$

$$\Delta G_1^{s} = -RT \ln \left( M_1 \, V_g^{0} / 273.2R \right) \tag{3}$$

By incorporating eqns. 2 and 3, we calculated the entropy of sorption of solutes as follows:

$$\Delta G_1{}^s = \Delta H_1{}^s - T\Delta S_1{}^s \tag{4}$$

where  $V_g^0$  is the specific retention volume of the probe, T is the column temperature (K),  $M_1$  is the molecular weight of probe and R is the gas constant. The adsorption enthalpy of the probes that is adsorbed by the polymer,  $\Delta H_a$ , was calculated using the following equation<sup>17</sup>:

$$\partial V_g^{0} / \partial (1/T) = -\Delta H_a / R \tag{5}$$

Partial molar free energy of mixing  $\Delta G_1^{\infty}$  (cal/mol) and partial molar entalphy  $\Delta H_1^{\infty}$  (cal/mol) at infinite dilution are calculated according to the following equation<sup>10</sup>:

$$\Delta H_1^{\infty} = R(\delta \ln(a_1/w_1)^{\infty} / \delta(1/T))$$
(6)

$$\Delta G_1^{\infty} = R \ln \left( a_1 / w_1 \right)^{\infty} \tag{7}$$

The weight fraction activity coefficient,  $\Omega_1^{\circ}$ , of the solute probe at infinite dilution is calculated according to the following equation<sup>5</sup>:

$$\Omega_1^{\circ} = 273.2 \text{R/V}_g^{0} P_1^{0} M_1 \exp[-P_1^{0} (B_{11} - V_1)/\text{RT}]$$
(8)

(CPDMMA-ST)-solute interaction parameters of the different solutes,  $\chi_{12}^{\infty}$ , at infinite dilution were defined using the following equation:

$$\chi_{12}^{\infty} = \ln \left[ (273.2 \times R \times V_2) / (V_g^{0} \times V_1 \times P_1^{0}) \right] - 1 - P_1^{0} / RT(B_{11} - V_1)$$
(9)

where R is the gas constant,  $V_2$  is the specific volume of the polymer,  $V_1$  is the molar volume of the solute,  $P_1^0$  is the vapor pressure and  $B_{11}$  is the second virial coefficient of the solute in the gaseous state. In addition,  $V_1$ ,  $P_1^0$  and  $B_{11}$  were calculated at the column temperature.

Second virial coefficients, B<sub>11</sub>, were computed using the following equation<sup>15</sup>:

$$B_{11}/V_{c} = 0.430 - 0.886(T_{c}/T) - 0.694(T_{c}/T)^{2} - 0.0375(n-1)(T_{c}/T)^{4.5}$$
(10)

where  $V_c$  and  $T_c$  are the critical molar volume and the critical temperature of the solute, respectively and n is the number of carbon atoms in the solute.

The solubility parameters of polymers ( $\delta_2$ ) were determined by using the following relation:

$$\delta_1^2 - \Delta G_1^{\infty} / V_1 = 2 \, \delta_1 \delta_2 - \delta_2^2 \tag{11}$$

$$[(\delta_1^2/RT) - \chi_{12}^{\infty}/V_1] = (2\delta_2/RT)\delta_1 - \delta_2^2/RT$$
(12)

If the left-hand side of this equation is plotted against  $\delta_1$ , then a straight line with a slope of  $(2\delta_1\delta_2)$  and an intercept of  $-\delta_2^2$  is obtained. Solubility parameters of polymer,  $\delta_2$ , can be calculated from the slope and intercept of the straight line<sup>15</sup>.

#### **EXPERIMENTAL**

The chromatographic grade molecular probes used in this study, including ethyl alcohol (C<sub>2</sub>), 1-propyl alcohol (C<sub>3</sub>), 1-butyl alcohol (C<sub>4</sub>), *n*-hexane (C<sub>6</sub>), *n*-heptane (C<sub>7</sub>), *n*-octane (C<sub>8</sub>),and *n*-nonane (C<sub>9</sub>) were obtained from Merck Chemical Co. Methane was used as a non-interacting marker to correct for the dead volume in the column. The CPDMMA-ST were

supplied from the Chemistry Department of Firat University, Elazig, Turkey and the Chromosorb W (80-100 mesh) was obtained from Sigma Chemical Co.

The polymer accounted for 10 % of the charging material. The glass transition temperature ( $T_g$ ), was approximately 373 K for (CPDMMA-ST)

A Shimadzu GC-14A model gas chromatograph equipped with a dual flame ionization detector (FID) was used in this analysis. Dry nitrogen gas (research grade) was used as a carrier gas. The pressures (mm-Hg) read at the inlet and outlet of the column using a mercury manometer were used to compute corrected retention volumes using a standard procedure. The flow rate was measured at the end of the column using a soap bubble flow meter. A flow rate of approximately 115 mL min<sup>-1</sup> was used throughout our experiment. The column consisted of a 1 m copper pipe with 3.2 mm ID. The copper column was washed with distilled water, benzene and acetone and then was dried. A column packing material was prepared by coating 80-100 mesh size Chromosorb W with CPDMMA-ST. The prepared material was packed into the copper column (3.2 mm ID  $\times$  1 m). The column was conditioned at 200 °C with a fast carrier gas flow rate for 48 h prior to use. Probes were injected into the column using 1 µL Hamilton syringes. Three consecutive injections were performed for each probe for each set of measurements. An injection volume of 0.3 µL was selected and the retention times of the probes were measured using a chromatopac CR6A (Shimadzu).

## **RESULTS AND DISCUSSION**

The  $V_g^{0}$  of probes were obtained using one polymer loading at a series of temperatures. The  $V_g^{0}$  values of these probes were calculated according to the eqn. 1. The retention volume was confirmed to be independent of solute sample size in all of the studied cases<sup>18</sup>. Specific retention volume data are essential in determining the physicochemical or thermodynamic properties of a polymer by inverse gas chromatography. To obtain these data, the amount of the polymer that has been coated onto the support, the gas flow rate, the column pressures and temperature must be known. The  $V_g^{0}$  values are given in Table-1. The specific retention volumes of the probes on the (CPDMMA-ST) varied with temperature for each of the probe and generally decreased with increasing temperature. The T<sub>g</sub>, of (CPDMMA-ST) is given in Fig. 1. As shown in Fig. 1, the T<sub>g</sub> of (CPDMMA-ST) was approximately 373 K<sup>19</sup>.



Fig. 1. Varition of logarithm of specific retention volumes,  $V_g^{0}$  (mL/g) of alcohols and alkanes with reciprocal of absolute column temperature and the glass transition temperature (T<sub>g</sub>) for CPDMMA-ST

| AND ALKANES WITH TEMPERATURE USING CPDMMA-ST AS STATIONARY PHASE |               |                     |                 |                  |                   |                  |                  |  |
|------------------------------------------------------------------|---------------|---------------------|-----------------|------------------|-------------------|------------------|------------------|--|
| Temperature (1/T) 10 <sup>-3</sup>                               | Ethyl alcohol | 1-Propyl<br>alcohol | 1-Butyl alcohol | <i>n</i> -Hexane | <i>n</i> -Heptane | <i>n</i> -Octane | <i>n</i> -Nonane |  |
| 2.114                                                            | 2.928         | 2.882               | 2.937           | 2.876            | 2.782             | 2.728            | 2.854            |  |
| 2.159                                                            | 2.956         | 2.928               | 2.995           | 2.905            | 2.814             | 2.779            | 2.877            |  |
| 2.207                                                            | 3.013         | 3.007               | 3.060           | 2.943            | 2.846             | 2.826            | 2.908            |  |
| 2.257                                                            | 3.036         | 3.052               | 3.132           | 2.968            | 2.874             | 2.877            | 2.960            |  |
| 2.309                                                            | 3.096         | 3.126               | 3.217           | 2.993            | 2.907             | 2.929            | 2.996            |  |
| 2.364                                                            | 3.131         | 3.170               | 3.28            | 3.045            | 2.951             | 2.988            | 3.032            |  |
| 2.421                                                            | 3.216         | 3.230               | 3.339           | 3.070            | 2.988             | 3.052            | 3.090            |  |
| 2.481                                                            | 3.295         | 3.327               | 3.405           | 3.119            | 3.032             | 3.158            | 3.154            |  |
| 2.544                                                            | 3.370         | 3.372               | 3.460           | 3.213            | 3.105             | 3.227            | 3.223            |  |
| 2.610                                                            | 3.428         | 3.397               | 3.463           | 3.224            | 3.168             | 3.293            | 3.289            |  |
| 2.680                                                            | 3.392         | 3.373               | 3.434           | 3.238            | 3.200             | 3.291            | 3.372            |  |
| 2.754                                                            | 3.497         | 3.434               | 3.529           | 3.328            | 3.285             | 3.393            | 3.488            |  |
| 2.832                                                            | 3.612         | 3.506               | 3.641           | 3.363            | 3.363             | 3.456            | 3.612            |  |
| 2.915                                                            | 3.756         | 3.613               | 3.772           | 3.450            | 3.441             | 3.516            | 3.773            |  |
| 3.003                                                            | 3.890         | 3.761               | 3.980           | 3.480            | 3.522             | 3.591            | 4.009            |  |
| 3.095                                                            | 4.002         | 3.911               | 4.271           | 3.567            | 3.625             | 3.658            | 4.369            |  |
| 3.194                                                            | 4.099         | 4.045               | 4.567           | 3.633            | 3.728             | 3.821            | 4.766            |  |

TABLE-1 VARIATION OF THE LOGARITHM OF SPECIFIC RETENTION VOLUMES (In Vg<sup>0</sup>, mL/g), OF ALCOHOLS

The  $\Delta H_a$  and  $\Delta H_1^s$  values of CPDMMA-ST-probe systems were calculated by plotting  $\ln V_g^0$  against  $1/T (K^{-1})$  using eqns. 5 and 2, respectively. Table-2 shows experimentally obtained sorption enthalpy,  $\Delta H_1^{s}$ , at temperatures 373-403 K. Table-3 shows the experimentally obtained adsorption enthalpy  $\Delta H_a$  at temperatures of 313-373 K, respectively.  $\Delta H_a$  and  $\Delta H_1^s$  values of probes that were determined from the slopes of straight lines in Figs. 2 and 3 for CPDMMA-ST were positive, except for *n*-nonane. At the temperatures below  $T_g$ , positive  $\Delta H_a$  values indicate that the polymer do not interact with probes. However, negative  $\Delta H_a$  value indicate that the CPDMMA-ST interacts







Fig. 3. Varition of logarithm of specific retention volumes  $(V_g^0, mL/g)$  of alcohols and alkanes with reciprocal of absolute column temperature for CPDMMA-ST, for ΔH<sub>a</sub> (cal/mol)

with *n*-nonane.  $\Delta G_1^{S}$  and  $\Delta S_1^{S}$  values of (CPDMMA-ST)-probe systems were calculated from eqns. 3 and 4, respectively and are given in Table-2. The  $\Delta S_1^s$  and  $\Delta H_1^s$  values were negative and the  $\Delta G_1^{s}$  values were positive. These values are expected for polymer-non solvent systems<sup>8,20</sup>.  $\Delta H_1^{\infty}$  values of polymerprobe system were calculated by plotting  $\ln a_1/w_1$  against 1/T(K<sup>-1</sup>) (Fig. 4.) using eqn. 6. Table-4 shows experimentally obtained partial molar heats,  $\Delta H_1^{\circ}$ . The  $\Delta H_1^{\circ}$  values were positive and correspond with the expected values for polymernon-solvent systems<sup>15</sup>.

| PARTIAL MOLAR ENTHALPY ( $\Delta H_1^s$ , cal/mol), PARTIAL MOLAR FREE ENERGY OF MIXING ( $\Delta G_1^s$ , cal/mol) AND<br>PARTIAL MOLAR ENTROPY ( $\Delta S_1^s$ , cal/mol) OF CPDMMA-ST WITH ALCOHOLS AND ALKANES |                                                                                            |          |          |          |          |        |        |        |        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------|----------|----------|----------|--------|--------|--------|--------|--|
| Probe                                                                                                                                                                                                               | $\Delta H_1^{s} (cal/mol) \qquad \Delta G_1^{s} (cal/mol) \qquad \Delta S_1^{s} (cal/mol)$ |          |          |          |          |        |        |        |        |  |
| 11000                                                                                                                                                                                                               | 373-403 K                                                                                  | 403 K    | 393 K    | 383 K    | 373 K    | 403 K  | 393 K  | 383 K  | 373 K  |  |
| Ethyl alcohol                                                                                                                                                                                                       | -1024.82                                                                                   | 2314.815 | 2199.204 | 2098.612 | 2070.822 | -8.287 | -8.204 | -8.155 | -8.299 |  |
| 1-Propyl alcohol                                                                                                                                                                                                    | -476.005                                                                                   | 2076.877 | 1989.548 | 1920.176 | 1888.148 | -6.335 | -6.274 | -6.256 | -6.338 |  |
| 1-Butyl alcohol                                                                                                                                                                                                     | -255.806                                                                                   | 1845.842 | 1757.612 | 1710.334 | 1686.879 | -5.215 | -5.123 | -5.134 | -5.208 |  |
| n-Hexane                                                                                                                                                                                                            | -1086.51                                                                                   | 1954.681 | 1832.938 | 1777.708 | 1720.661 | -7.546 | -7.429 | -7.478 | -7.526 |  |
| n-Heptane                                                                                                                                                                                                           | -1686.53                                                                                   | 1903.760 | 1798.984 | 1705.232 | 1636.896 | -8.909 | -8.869 | -8.856 | -8.910 |  |
| <i>n</i> -Octane                                                                                                                                                                                                    | -1377.31                                                                                   | 1697.495 | 1601.604 | 1510.808 | 1472.877 | -7.630 | -7.580 | -7.541 | -7.641 |  |
| <i>n</i> -Nonane                                                                                                                                                                                                    | -2151.92                                                                                   | 1608.094 | 1514.359 | 1425.726 | 1327.087 | -9.330 | -9.329 | -9.341 | -9.327 |  |

TABLE-2



Fig 4. Weight fraction activity coefficient of solute probes at infinite dilution Ω<sub>1</sub><sup>∞</sup> with repicrocal of absolute column temperature for CPDMMA-ST with alcohols and alkanes

The values of  $\Omega_1^{\infty}$  and  $\chi_{12}^{\infty}$  were obtained using eqns. 8 and 9 respectively and are presented in Tables 5 and 6.

Furthermore,  $\Omega_1^{\infty}$  values greater than 5 have been considered to indicate poor polymer-solute systems, while lower values have been considered to indicate good solubility for such systems. The following rules were formulated by Guillet<sup>20</sup> and Purnell<sup>21</sup>:

| $\Omega_1^{\infty} < 5$      | : good solvents     |
|------------------------------|---------------------|
| $5 < \Omega_1^{\infty} < 10$ | : moderate solvents |
| $\Omega_1^{\sim} > 10$       | : bad solvents      |

| TABLE-4<br>PARTIAL MOLAR ENTHALPY OF SOLUTE PROBES<br>AT INFINITE DILUTION (ΔH <sub>1</sub> <sup>∞</sup> , cal/mol) OF CPDMMA-ST<br>WITH ALCOHOLS AND ALKANES SYSTEMS |                                 |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|--|
| Drohe                                                                                                                                                                 | $\Delta H_1^{\infty}$ (cal/mol) |  |  |  |  |  |  |  |
| 11000                                                                                                                                                                 | 473-403 K                       |  |  |  |  |  |  |  |
| Ethyl Alcohol                                                                                                                                                         | 7297.257                        |  |  |  |  |  |  |  |
| 1-Propyl Alcohol                                                                                                                                                      | 7113.062                        |  |  |  |  |  |  |  |
| 1-Butyl Alcohol                                                                                                                                                       | 7578.616                        |  |  |  |  |  |  |  |
| <i>n</i> -Hexane                                                                                                                                                      | 5506.97                         |  |  |  |  |  |  |  |
| <i>n</i> -Heptane                                                                                                                                                     | 6300.777                        |  |  |  |  |  |  |  |
| <i>n</i> -Octane                                                                                                                                                      | 6281.503                        |  |  |  |  |  |  |  |
| <i>n</i> -Nonane                                                                                                                                                      | 7734.596                        |  |  |  |  |  |  |  |

Here,  $\chi_{12}^{\infty}$  values greater than 0.5 represent unfavorable polymer-solvent interactions, while values lower than 0.5 indicate favorable interactions in dilute polymer solutions<sup>21,22</sup>. Based on these values (Tables 5 and 6) and according to the  $\Omega_1^{\infty}$  and  $\chi_{12}^{\infty}$ , all of the probes under the T<sub>g</sub> are poor solvents for polymer. When the probes are above the T<sub>g</sub> according to the  $\Omega_1^{\infty}$  and  $\chi_{12}^{\infty}$  values, ethyl alcohol, 1-propyl alcohol, *n*hexane, n-heptane are good solvents. However, 1-butyl alcohol and *n*-octane are moderate solvent, *n*-nonane is poor solvent for CPDMMA-ST. It can be concluded from  $\Omega_1^{\circ}$  and  $\chi_{12}^{\circ}$ values that as the heat increases, the probes can solve the polymers. In Tables 5 and 6, values increased as the number of carbons in the alcohols and alkanes increased. That is, at these temperatures the solubility of (CPDMMA-ST) was decreased in the alcohols. The interaction parameters,  $\chi_{12}^{\infty}$  and the weight coefficients,  $\Omega_1^{\infty}$  did show with change in the number of carbons in the series. However, the  $\Omega_{1^{\infty}}$  and  $\chi_{12^{\infty}}$ values decreased in all of the series as the column temperature increased23.

The solubility parameter of a polymer  $\delta_2$ , can be determined from either the slope or the intercept of a straight line obtained by poltting the left side of eqn.  $11^{9\cdot15}$  against  $\delta_1$ . These values are shown in Table-7. The solubility parameter of

| TABLE-5 WEIGHT FRACTION ACTIVITY COEFFICIENT ( $\Omega_1^{\circ}$ ) OF CPDMMA-ST WITH ALCOHOLS AND ALKANES SYSTEMS |                     |       |       |       |       |       |        |        |  |
|--------------------------------------------------------------------------------------------------------------------|---------------------|-------|-------|-------|-------|-------|--------|--------|--|
| Droha                                                                                                              | $\Omega_l^{\infty}$ |       |       |       |       |       |        |        |  |
| riote                                                                                                              | 473 K               | 463 K | 453 K | 443 K | 433 K | 423 K | 413 K  | 403 K  |  |
| Ethyl alcohol                                                                                                      | 0.818               | 0.98  | 1.153 | 1.419 | 1.704 | 2.121 | 2.549  | 4.099  |  |
| 1-Propyl alcohol                                                                                                   | 1.205               | 1.421 | 1.64  | 1.983 | 2.356 | 2.929 | 3.643  | 4.441  |  |
| 1-Butyl alcohol                                                                                                    | 1.612               | 1.904 | 2.263 | 2.707 | 3.244 | 1.636 | 5.134  | 6.612  |  |
| <i>n</i> -Hexane                                                                                                   | 0.852               | 0.965 | 1.091 | 1.261 | 1.469 | 1.683 | 1.999  | 2.346  |  |
| n-Heptane                                                                                                          | 1.457               | 1.676 | 1.944 | 2.286 | 2.704 | 3.193 | 3.849  | 4.664  |  |
| <i>n</i> -Octane                                                                                                   | 2.37                | 2.726 | 3.177 | 3.732 | 4.428 | 5.28  | 6.347  | 7.426  |  |
| <i>n</i> -Nonane                                                                                                   | 3.218               | 3.876 | 4.687 | 5.607 | 6.91  | 8.636 | 10.718 | 13.436 |  |

TABLE-6 INTERACTION PARAMETERS ( $\chi_{12}^{\infty}$ ) OF CPDMMA-ST WITH ALCOHOLS AND ALKANES SYSTEMS

| Ducho            | $\Omega_{i}^{\infty}$ |       |       |       |        |       |        |        |  |
|------------------|-----------------------|-------|-------|-------|--------|-------|--------|--------|--|
| 11000            | 473 K                 | 463 K | 453 K | 443 K | 433 K  | 423 K | 413 K  | 403 K  |  |
| Ethyl alcohol    | -1.59                 | -1.42 | -1.26 | -1.06 | -0.88  | -0.66 | -0.469 | -0.26  |  |
| 1-propyl alcohol | -1.21                 | -1.05 | -0.91 | -0.72 | -0.55  | -0.33 | -0.103 | 0.101  |  |
| 1-butyl alcohol  | -0.91                 | -0.75 | -0.48 | -0.4  | -0.21  | 0.01  | 0.256  | 0.515  |  |
| <i>n</i> -Hexane | -1.65                 | -1.53 | -1.41 | -1.27 | -1.12  | -0.98 | -0.809 | -0.649 |  |
| n-Heptane        | -1.11                 | -0.97 | -0.83 | -0.67 | -0.5   | -0.33 | -0.143 | 0.051  |  |
| n-Octane         | -0.63                 | -0.49 | -0.34 | -0.17 | -0.002 | 0.177 | 0.364  | 0.525  |  |
| <i>n</i> -Nonane | -0.35                 | -0.16 | 0.032 | 0.214 | 0.427  | 0.653 | 0.874  | 1.106  |  |

| TABLE-7<br>SOLUBILITY PARAMETER [δ <sub>2</sub> (cal/cm <sup>3</sup> ) <sup>0.5</sup> ]<br>OF CPDMMA-ST AT 423 AND 413 K |        |           |                       |                           |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----------------------|---------------------------|------|--|--|--|--|
| T (K)                                                                                                                    | Slope  | Intercept | From slope $\delta_2$ | From intercept $\delta_2$ | r    |  |  |  |  |
| 423                                                                                                                      | 13.479 | 49.92     | 6.739                 | 7.065                     | 0.99 |  |  |  |  |
| 413                                                                                                                      | 13.746 | 52.745    | 6.873                 | 7.262                     | 0.99 |  |  |  |  |

CPDMMA-ST was evaluated from either the slope or intercepts of Fig. 5(a) and 5(b)  $6.739 \text{ (cal/cm}^3)^{0.5}$  or 7.065 (cal/cm $^3)^{0.5}$  at 423 K, respectively. In comparing the solubility values of CPDMMA-ST at different temperatures, it can be seen that solubility parameters decrease with increasing temperature<sup>24</sup>.



Fig 5. Variation of term  $(\delta_1^2 - \Delta G_1^{\sim}/V_1)$  with solubility parameters of the solutes  $(\delta_1, cal/cm^3)^{0.5}$  at temperatures (a) 423 K and (b) 433 K for CPDMMA-ST

# Conclusion

Inverse gas chromatography is a simple, fast and economical technique that provides valuable thermodynamic and physical information for characterizing polymeric materials. In this study, inverse gas chromatography was successfully applied to determine certain thermodynamic and physical properties of CPDMMA-ST, such as glass transition temperature, T<sub>g</sub> sorption enthalpy ( $\Delta H_1^s$ ), sorption free energy ( $\Delta G_1^s$ ), sorption entropy ( $\Delta S_1^{s}$ ), weight fraction activity coefficients ( $\Omega_1^{\infty}$ ), partial molar free energy of mixing ( $\Delta G_1^{\infty}$ ), partial molar heat of mixing  $(\Delta H_1^{\infty})$  and Flory-Huggins interaction parameters,  $\chi_{12}^{\infty}$ , at infinite dilution. The T<sub>g</sub> was approximately 373 K for CPDMMA-ST. According to Flory-Huggins interaction parameters,  $\chi_{12}^{\infty}$  and the weight fraction activity coefficients,  $\Omega_1^{\infty}$  values, the probes solvated polymer at the temperature above Tg. Also, the solubility parameter values of (CPDMMA-ST),  $\delta_2$ , were determined as 6.739 (cal/cm<sup>3</sup>)<sup>0.5</sup>, 7.065 (cal/cm<sup>3</sup>)<sup>0.5</sup> respectively at 423 K from both slope and intercept of the straight line obtained by plotting the left-hand side of eqn. 11 *versus*  $\delta_1$  values of probes.

## REFERENCES

- 1. J.M. Braun and J.E. Guillet, Macromolecules, 8, 882 (1975).
- 2. D.G. Gray and J.E. Guillet, *Macromolecules*, 7, 244 (1974).
- 3. C.T. Chen and Z.Y. Al-Saigh, Macromolecules, 22, 2974 (1989).
- 4. M. Öner and S. Dinçer, *Polymer*, **28**, 279 (1987).
- 5. C.-T. Chen and Z.Y. Al-Saigh, Polymer, 31, 1170 (1990).
- 6. O. Smidsrød and J.E. Guillet, Macromolecules, 2, 272 (1969).
- 7. M. Galin, *Macromolecules*, **10**, 1239 (1977).
- 8. M.H. Karagöz, H. Erge and Z. Ilter, Asian J. Chem., 21, 4032 (2009).
- 9. D.D. Deshpande and O.S. Tyagi, *Macromolecules*, **11**, 746 (1978).
- G. Dipaola-Baranyi, J.E. Guillet, J.E. Klein and H.E. Jeberien, J. Chromatogr. A, 166, 349 (1978).
- J.M. Braun, M. Cutajar, J.E. Guillet, H.P. Schreiber and D. Patterson, *Macromolecules*, **10**, 864 (1977).
- 12. M. Galin and L. Maslinko, Macromolecules, 18, 2192 (1985).
- 13. G. Courval and D.G. Gray, Macromolecules, 8, 326 (1975).
- 14. J.M. Braun and J.E. Guillet, *Macromolecules*, **10**, 101 (1977).
- 15. G. Dipaola-Baranyi and J.E. Guillet, Macromolecules, 11, 228 (1978).
- 16. J.E. Guillet, J. Macromol. Sci. Chem., 4, 1669 (1970).
- 17. R. Sanetra, B.N. Kolarz and A. Wochowicz, Polymer, 28, 1753 (1987).
- A. Etxeberría, J. Alfageme, C. Uriarte and J.J. Iruin, J. Chromatogr. A, 607, 227 (1992).
- 19. J. Klein and H.-E. Jeberien, Makromol. Chem., 181, 1237 (1980).
- M.H. Karagöz, Ö.S. Zorer and Z. Ilter, *Polymer-Plastics Technol. Eng.*, 45, 785 (2006).
- J.E. Guillet, in ed.: J.H. Purnel, Advances in Analytical Chemistry, In: New developments in Gas Chromatography, John Wiley & Sons, New York (1973).
- 22. Z. Ilter, I. Kaya and A. Açikses, J. Polym. Eng., 22, 45 (2002).
- Z. Ilter, E. Özdemir and M. Ahmedzade, *Desig. Monomers Polym.*, 2, 343 (1999).
- Z. Ilter, M. Coskun, I. Erol, A. Unal and M. Ahmedzade, *Polym. Degrad.* Stab., 75, 501 (2002).