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INTRODUCTION

Quinoxaline is a heteroaromatic unit of extensive interests
owing to its occurrence in a diverse range of biological activities
including antitumor1, antibacterial, anthelmintic, antiinfla-
mmatory, kinase inhibitory and anticancer activities2. They
also have a wide application in dyes3, efficient electron lumine-
scent material4, organic semiconductors5, DNA cleaving agents6,
photoinitiators in UV-cured coatings7 and donor materials8.
Therefore, a number of methods have been developed for the
synthesis of substituted quinoxalines9-13. Quinoxalines can be
prepared from α-hydroxy ketones and 1,2-diamines using
transition metal complexes as catalysts14. The most common
method for their preparation relies on the condensation of an
aryl 1,2-diamine with a 1,2-dicarbonyl compound15. However,
the current studies are mainly focused on the same substrate
such as dicarbonyl compounds or α-hydroxy ketones as the
starting materials by different methodologies for the synthesis
of quinoxaline derivatives16-19. Therefore, it is highly significant
to construct quinoxaline rings by developing new synthesis
methodologies from readily available materials. Recently, the
work reported by Chen’s group attracted our attention20. Chen
et al.20 have developed a Cu(OAc)2-catalyzed method for
synthesis of quinoxaline by using o-phenylenediamines and
terminal alkynes in the presence of 3 equiv of DMAP and
Cs2CO3. However, when we repeat their work, it is found that
the product composition is complicated and a large number of
the coupling product of phenylacetylene are obtained due to
the strong base conditions. Herein, we reported an efficient
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CuX (X = Cl, Br, I)-catalyzed cycloisomerization reaction of
alkynes with o-phenylendiamines, leading to the synthesis of
quinoxaline derivatives.

EXPERIMENTAL

All compounds are commercially available and were used
without further purification. NMR spectra were recorded on a
Bruker AVANCE DPX-400 or Bruker AVANCE DRX-500
instrument with TMS as an internal reference. MS measure-
ments were performed on Bruker Reflex III mass spectrometer
(ESI). Elemental analyses were done with an ElementarVario
Micro Cube in School of Chemistry & Chemical Engineering
of Guangxi Normal University, China. Flash chromatography
was performed with QingDao silica gel (300-400 mesh).

General procedure for synthesis of quinoxaline deriva-
tives: The reaction mixture of o-phenylendiamine (2.5 mmol),
alkynes (1 mmol), CuCl (0.1 mmol), chlorobenzene (2 mL) in a
10 mL sealed tube was stirred at 70 °C and monitored periodically
by TLC. Upon completion, chlorobenzene was removed under
reduced pressure by an aspirator and then the residue was purified
by silica gel column chromatography (eluent, PE/EA = 50:1) to
afford corresponding quinoxaline derivatives.

2-Phenyl-3-(phenylethynyl)quinoxalne (3aa): Yellow
solid, m.p.: 109-111 °C. 1H NMR (500 MHz, CDCl3): δ 8.15-
8.05 (m, 4H), 7.76-7.72 (m, 2H), 7.60-7.53 (m, 3H), 7.51-
7.47 (m, 2H), 7.39-7.25 (m, 3H). 13C NMR (125 MHz, CDCl3):
δ 155.06, 140.97, 140.68, 138.04, 137.61, 132.08, 130.63,
130.25, 129.66, 129.56, 129.27, 128.72, 128.41, 128.12,
121.66, 95.04, 88.33. MS: m/z = 307 [M+H+].



2-(p-Tolyl)-3-(p-tolylethynyl)quinoxaline (3ba): Yellow
solid, m.p.: 112-114 °C. 1H NMR (500 MHz, CDCl3): δ 8.12-
8.10 (m, 2H), 8.05 (d, J = 8.1 Hz, 2H), 7.74-7.72 (m, 2H),
7.42 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 7.5 Hz, 2H),7.17 (d, J =
7.5 Hz, 2H), 2.48 (s, 3H), 2.37 (s, 3H). 13C NMR (125 MHz,
CDCl3): δ 154.9, 140.9, 140.7, 139.93, 139.78, 138.2, 134.9,
132.0, 130.4, 129.98, 129.65, 129.2, 128.8, 128.68, 127.4,
118.8, 95.3, 88.2, 21.60, 21.44. MS: m/z = 335 [M+H+]

2-(4-Ethylphenyl)-3-[(4-ethylphenyl)ethynyl]quino-
xaline (3ca): Yellow solid, m.p.: 113-115 °C. 1H NMR (500
MHz,CDCl3): δ 8.15-8.09 (m, 2H), 8.06 (d, J = 8.0 Hz, 2H),
7.75 (dd, J = 6.2, 3.2 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.39
(d, J = 7.9 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 2.78 (q, J = 7.5
Hz, 2H), 2.66 (q, J = 7.6 Hz, 2H), 1.32 (t, J = 7.6 Hz, 3H),
1.24 (t, J = 7.6 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ 155.0,
146.2, 146.1, 140.9, 140.7, 138.3, 135.1, 132.1, 130.4, 129.9,
129.7, 129.2, 128.7, 128.0, 127.6, 119.0, 95.4, 88.2, 28.9, 28.8,
15.6, 15.0. MS: m/z = 363 [M+H+]. Anal calcd for C26H22N2:
C, 86.15; H, 6.12; N, 7.73. Found: C, 86.37; H, 6.01; N, 7.62.

2-(4-Methoxyphenyl)-3-[(4-methoxyphenyl)ethynyl]-
quinoxaline (3da): Yellow solid, m.p.: 124-126 °C. 1H NMR
(500 MHz, CDCl3): δ 8.13-8.05 (m, 4H), 7.73 (td, J = 1.8 Hz,
6.0 Hz, 2H), 7.49-7.47 (m, 2H), 7.09-7.06 (m, 2H), 6.89-6.86
(m, 2H), 3.91 (s, 3H), 3.82 (s, 3H). 13C NMR (125 MHz,
CDCl3): δ 160.90, 160.65, 154.2, 140.7, 138.1, 133.7, 131.2,
130.33, 130.08, 129.87, 129.06, 128.5, 114.1, 113.6, 95.5,
87.8, 55.40, 55.31. MS: m/z = 367 [M+H+].

2-(4-Fluorophenyl)-3-[(4-fluorophenyl)ethynyl]quino-
xaline (3ea): White solid, m.p.: 212-218 °C. 1H NMR (500
MHz, CDCl3): δ 8.12 (m, 4H), 7.79 (m, 2H), 7.49 (dd, J = 8.7,
5.4 Hz, 2H), 7.26 (d, J = 8.0 Hz, 3H), 7.07 (m, 2H). 13C NMR
(125 MHz, CDCl3):δ 164.84, 164.37, 153.9, 141.0, 140.7,
137.70, 134.20, 134.13, 133.75, 131.77, 131.71, 130.87,
130.45, 129.55, 129.27, 128.77, 116.12, 115.94, 115.33,
115.16, 94.0, 88.0. MS: m/z = 363 [M+H+].

2-(4-Bromophenyl)-3-[(4-bromophenyl)ethynyl]quino-
xaline (3fa): White solid, m.p.: 210-217 °C. 1H NMR (500
MHz, CDCl3):δ 8.13 (dd, J = 6.3, 2.7 Hz, 2H), 8.00 (d, J = 8.5
Hz, 2H), 7.80 (dd, J = 6.4, 3.4 Hz, 2H), 7.70 (d, J = 8.4 Hz,
3H), 7.53 (d, J = 8.3 Hz, 3H), 7.36 (d, J = 8.4 Hz, 2H). 13C
NMR (125 MHz, CDCl3): δ 141.19, 140.84, 139.3, 136.5,
133.42, 132.39, 131.99, 131.43, 131.30, 131.04, 130.87,
130.64, 129.4, 128.9, 114.0, 94.1, 89.1. MS: m/z = 464
[M+H+]. Anal calcd for C22H12Br2N2: C, 56.93; H, 34.43; N,
6.04. Found: C, 57.25; H, 34.15; N, 6.12.

2-(Thiophen-2-yl)-3-(thiophen-2-ylethynyl)quino-
xaline (3ha): Yellow solid,m.p.: 94-96 °C. 1H NMR (500 MHz,
CDCl3): δ 8.43 (d, J = 1.8 Hz, 1H), 8.08-8.04 (m, 2H), 8.01
(d, J = 4.2 Hz, 1H), 7.73-7.69 (m, 3H), 7.44 (dd, J = 3.0 Hz, J
= 5.4 Hz, 1H), 7.32 (dd, J = 3.0 Hz, 4.8 Hz, 1H), 7.27(d, J =
5.1 Hz, 1H); 13C NMR (125 MHz, CDCl3): δ 149.33, 140.59,
138.93, 137.13, 131.28, 130.55, 129.96, 129.63, 129.03,
128.81, 128.58, 127.93, 125.87, 125.21,120.78, 90.32, 88.37.

2-(Pent-1-yn-1-yl)-3-propylquinoxaline (3ia): Colour-
less oil. 1H NMR (500 MHz, CDCl3):δ 8.04-7.97 (m, 2H),
7.73-7.64 (m, 2H), 3.15 (dd, J = 8.6, 6.9 Hz, 2H), 2.55 (t, J =
7.0 Hz, 2H), 1.91 (dd, J = 15.2, 7.6 Hz, 2H), 1.74 (dd, J =
14.5, 7.2 Hz, 2H), 1.12 (t, J = 7.4 Hz, 3H), 1.07 (t, J = 7.4 Hz,
3H). 13C NMR (125 MHz, CDCl3): δ 158.55, 140.78, 140.03,

129.85, 129.22, 128.70, 128.56, 97.22, 78.90, 77.25, 77.00,
76.75, 38.34, 29.69, 21.97, 21.78, 21.69, 14.08, 13.64. MS:
m/z = 239 [M+H+]. Anal calcd for C16H18N2: C, 80.63; H, 7.61;
N, 11.76. Found: C, 80.80; H, 7.40; N, 11.80.

2-Hexyl-3-(oct-1-yn-1-yl) quinoxaline (3ja): Colourless
oil. 1H NMR (500 MHz, CDCl3): δ 8.05-7.95 (m, 2H), 7.68
(m, 2H), 3.20-3.10 (t, J = 5.0 Hz, 2H), 2.56 (t, J = 7.1 Hz, 2H),
1.85 (m, 2H), 1.76-1.59 (m, 2H), 1.56-1.41 (m, 4H), 1.41-
1.29 (m, 8H), 0.91 (t, J = 5.0 Hz, 3H), 0.90 (t, J = 6.7 Hz, 3H).
13C NMR (125 MHz, CDCl3): δ 158.9, 140.9, 140.7, 140.1,
130.0, 129.3, 128.8, 128.6, 97.6, 78.9, 36.6, 31.8, 31.5, 29.8,
29.5, 28.9, 28.8, 28.4, 22.70, 22.69, 19.9, 14.2. MS: m/z =
323 [M+H+].

2-(Butyl)-3-(hex-1-yn-1-yl)quinoxaline (3ka): Colour-
less oil, 1H NMR (500 MHz, CDCl3): δ 8.00 (m, 2H), 7.68 (m,
2H), 3.14 (t, J = 7.5 Hz, 2H), 2.57 (t, J = 7.2 Hz, 2H), 1.90-
1.80 (m, 2H), 1.74-1.64 (m, 2H), 1.60-1.43 (m, 4H), 1.02-
0.95(m, 6H); 13C NMR (125 MHz, CDCl3): δ158.7, 140.63,
140.42, 139.9, 129.79, 129.14, 128.58, 128.40, 97.2, 78.6,
36,1, 30.74, 30.19, 22.73, 22.04, 19.2, 13.84, 13.50. MS: m/z
= 267 [M+H+].

6-Chloro-2-phenyl-3-(phenylethynyl)quinoxaline
(3ab): White solid, m.p.: 220-225 °C. 1H NMR (500 MHz,
CDCl3):δ 8.13-8.09 (m, 4H), 7.71 (dd, J = 8.9, 2.2 Hz, 1H),
7.56-7.58 (m, 3H), 7.50-7.48 (m, 2H), 7.42-7.34 (m, 3H).13C
NMR (125 MHz, CDCl3):δ 155.4, 141.4, 139.40, 139.15,
137.5, 136.3, 132.4, 131.7, 130.67, 130.05, 129.96, 129.82,
128.66, 128.35, 127.7, 121.7, 96.1, 88.3. MS: m/z = 341
[M+H+]. Anal calcd for C22H13ClN2: C, 77.53; H, 3.84; N, 8.22.
Found: C, 77.82; H, 3.69; N, 8.13.

6-Chloro-3-(p-tolyl)-2-(p-tolylethynyl)quinoxaline
(3bb1) and 6-chloro-2-(p-tolyl)-3-(p-tolylethynyl)quino-
xaline (3bb2); 3bb1:3bb2 = 1:1: Yellow solid, m.p.: 150-153
°C. 1H NMR (500 MHz, CDCl3): δ8.08-8.04 (m, 4H), 7.65
(dd, J = 2.4 Hz, 8.7 Hz, 1H), 7.41-7.33 (m, 4H), 7.17-7.14 (d,
J = 8.4 Hz, 2H), 2.47 (s, 3H), 2.36(s, 3H). 13C NMR (125
MHz, CDCl3): δ154.89, 141.03, 140.88, 140.20, 140.12,
140.03, 139.30, 139.13, 138.95, 136.14, 135.73, 134.39,
134.33, 132.07, 132.01, 131.25, 130.96, 139.36, 129.77,
129.63, 129.57, 129.22, 128.82, 128.07, 127.38, 118.50,
118.44, 96.12, 95.82, 87.91, 21.63, 21.46. MS: m/z = 369
[M+H+].

6-Methyl-2-phenyl-3-(phenylethynyl)quinoxaline
(3ac1) and 6-methyl-3-phenyl-2-(phenylethynyl)quinoxaline
(3ac2); 3ac1:3ac2 = 2.0:1: Yellow solid, m.p.: 138-142 °C.
1H NMR (500 MHz, CDCl3): δ 8.10-8.07 (m, 2H), 8.02 (d, J =
9.0 Hz, 1H), 7.89 (s, 1H), 7.57-7.53(m, 4H), 7.49-7.46 (m,
2H), 7.35-7.72 (m, 3H), 2.59 (S, 3H). 13C NMR (125 MHz,
CDCl3): δ 154.5, 141.67, 141.30, 141.11, 139.4, 138.10,
138.02,133.2, 132.8, 132.30, 132.26, 130.64, 130.23, 129.88,
129.80, 129.72, 129.45, 129.0, 128.88, 128.64, 128.49,128.38,
128.32, 127.7, 122.1, 95.0, 88.7, 22.19, 22.13. MS: m/z = 321
[M+H+].

RESULTS AND DISCUSSION

To identify the optimal conditions for the reactions, a series
of catalysts and solvents were screened (Table-1). Initially,
the reaction conditions were optimized starting from alkyne
(1a) and o-phenylendiamine (2a) in PhCl at 70 °C with CuCl
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TABLE-1 
OPTIMIZATION OF QUINOXALINE  

DERIVATIVES FORMATIONa 

NH2

NH2

+
Catalyst

Solvent N

N

1a 2a 3aa  
Entry Catalyst Solvent Yield (%)b 

1 CuCl (5 mol %) PhCl 82 
2 CuCl (10 mol %) PhCl 90 
3 CuCl (20 mol %) PhCl 91 
4 ZnCl2 (10 mol %) PhCl NR 
5 FeCl3 (10 mol %) PhCl NR 
6 BiCl3 (10 mol %) PhCl NR 
7 CuSO4 (10 mol %) PhCl 45 
8 Cu(OTf)2 (10 mol %) PhCl 56 
9 CuCl2 (10 mol %) PhCl 78 
10 CuBr (10 mol %) PhCl 89 
11 CuI (10 mol %) PhCl 88 
12c CuCl (10 mol %) THF 20 
13 CuCl (10 mol %) Toulene 40 
14 CuCl (10 mol %) ClCH2CH2Cl 89 
15c CuCl (10 mol %) CH2Cl2 87 
16 CuCl (10 mol %) H2O 33 
17 CuCl (10 mol %) – 37 
18 CuCl (10 mol %) DMSO NR 
19 CuCl (10 mol %) CH3NO2 NR 

aReaction conditions: 1a (1 mmol), 2a (2.5 mmol) and catalyst in PhCl 
(2 mL) at 70 °C. bIsolated yield of pure product based on alkyne 1a. 
cThe reaction was carried in sealed tube. 

 
(5 mol %) and the desired quinoxaline derivative (3aa) was
isolated in 82 % yield (Table-1, entry 1). The yield of 3aa was
increased to 90 % when the amount of CuCl was increased to
10 mol % (Table-1, entry 2). However, no further improvement
in the yield of 3aa could be achieved, when the amount of
CuCl was increased up to 20 mol % (Table-1, entry 3).The
crystallization of quinoxaline 3aa from anhydrous ethanol gave
single crystals suitable for X-ray analysis. Fig. 1 illustrates
the molecular structure of quinoxaline 3aa. CuSO4,Cu(OTf)2

and CuCl2 were also effective, albeit affording the products
with diminished yields (Table-1, entries 7-9). It is noted that
the CuBr and CuI also smoothly promoted the reactions in
excellent yields (Table-1, entries 10 and 11). Other Lewis acid
catalysts, such as ZnCl2, FeCl3 and BiCl3 did not promote the
reaction (Table-1, entries 4-6). In addition, it was found that
the solvent played a crucial role in this reaction (Table-1, entries
1 and 12-19). The reactions were obviously restrained when
they were performed in tetrahydrofuran or toluene (Table-1,
entries 12 and 13). Further inspection of the reaction conditions
revealed that this reaction also proceeded efficiently in solvents
such as ClCH2CH2Cl, CH2Cl2 (Table-1, entries 14 and 15),
whereas DMSO and CH3NO2 were found to be unfavourable
(Table-1, entries 18 and 19). Furthermore, H2O as solvent was
also able to facilitate the reaction and the reaction could be
carried out under solvent-free conditions (Table-1, entries 16
and 17). On the basis of the above experiments, the optimized
reaction conditions were summarized as follows: CuCl (10
mol %) in chlorobenzene as solvent.

C1

C2

C3
C4

C5

C6

C7

C8

C9

C10

C11 C12

C13

C14

C15 C16 C17

C18 C19

C20

C21C22

N2

N1

Cl1

Fig. 1. X-ray Crystal structure of quinoxaline 3aa. The thermal ellipsoids
are at the 50 % probability level

With the optimized reaction conditions in hands, we
started to investigate the scope and limitation of this reaction
and the results are summarized in Table-2. To our delight,
aromatic alkynes bearing both electron-rich and electron-poor
moieties gave the corresponding quinoxaline derivatives in
good to excellent yields. Substrates possessing electron-
donating groups at the aromatic alkyne ring reacted smoothly
and afforded the desired products in moderate yields (Table-
2, entries 2-4). Other alkynes possessing electron-withdrawing
groups at the benzene ring, such as fluoro and bromo also
reacted smoothly, providing substituted quinoxaline derivatives
in higher yields (Table-2, entries 5 and 6). This reaction was
not limited to aromatic alkynes; aliphatic alkynes were also
tested and it turned out that they could react smoothly with o-
phenylendiamines 2 to give quinoxalines (Table-2, entries 9-
11). Additionally, alkynes bearing a heterocyclic aromatic
substituent such as 2-ethynylthiophene was found to afford

TABLE-2 
SYNTHESIS OF QUINOXALINE DERIVATIVES FROM 

ALKYNES 1 AND o-PHENYLENEDIAMINES 2a 

NH2

NH2

+
CuCl ( 10 mol%)

PhCl, 70 oC N

N R1

R1

R1 R2
R2

1 2 3  

Entry Alkyne Diamine Product 
Time 
(h) 

Yield 
(%)b 

1 R1=C6H4 R2=H 3aa 7 90 
2 R1=4-CH3C6H4 R2=H 3ba 8 81 
3 R1=-CH2CH3 C6H4 R2=H 3ca 8 78 
4 R1=4-OCH3C6H4

 R2=H 3da 12 68 
5 R1=4-FC6H4 R2=H 3ea 5 95 
6 R1=4-BrC6H4 R2=H 3fa 5 93 
7 R1=TMS R2=H 3ga 24 Trace 
8 R1=Thienyl R2=H 3ha 12 58 
9 R1=C3H7 R2=H 3ia 8 57 

10 R1=C6H13 R2=H 3ja 7 88 
11 R1=C4H9 R2=H 3ka 7 56 
12 R1=C6H4 R2=4-Cl 3ab 7 71 
13 R1=4-CH3C6H4 R2=4-Cl 3bb 7 65 
14 R1=C6H4 R2=4-NO2 NR 24 NR 
15 R1=C6H4 R2=4-CH3 3ac 7 91 

aReaction conditions: 1 (1 mmol), 2 (2.5 mmol) and CuCl (10 mol %) 
in PhCl (2 mL) at 70 °C. 
bIsolated yield of pure product based on alkyne 1. 
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the desired product 3ha in moderate yield (Table-2, entry 8).
Next, the reaction scope of o-phenylenediamine was studied
(Table-2, entries 12-15). Obviously, electron-rich o-phenylene-
diamine provided the desired products in higher yields than
electron-poor o-phenylenediamine (Table-2, entry 15 vs. entries
12-14).

On the basis of previous work21-23, our postulated reaction
pathways are summarized in Scheme-I. The proposed initiated
complex A would lose H+ and Cu+ to give B. Subsequently, a
second equivalent of alkyne was attacked by B to form C.
After the losing another H+ and Cu+, a precursor of quinoxaline
D was obtained. Next, D could be easily aromatized to the
target compound quinoxaline 3 by air.

Conclusion

In summary, we have developed an effective CuX (X =
Cl, Br, I)-catalyzed cycloisomerization reaction of alkynes with
o-phenylendiamines to synthesize the quinoxaline derivatives.
A wide range of alkynes, bearing not only aryl groups but
also alkyl groups, effectively participated in the reactions and
the reaction conditions were relatively mild.
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