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INTRODUCTION

Carbon dot (CD) synthesis using renewable materials has
gained attention worldwide due to their potential in a wide range
of disciplines [1-4]. Natural resources containing carbohydrates
are used for the same purposes. Almost all parts of the plant
act as reducing and stabilizing agents and are used to obtain
nanoparticles [5]. The advantages of extracting plant products
are affordability, accessibility and above all, no harm to the
environment [6]. Quantum dots (CDs, > 10 nm in size) consist
of several polar hydrophilic carboxyl and hydroxyl groups,
which leads to the significant differences in the properties and
behaviour of the synthesized CDs [7]. The physico-chemical
characteristics of the synthesized CDs differ enormously
because of the large variety of synthetic methods and precursors
used in their formation. Bottom-up and top-down synthesis
are the two main approaches to synthesize quantum particles.
Top-down methods require harsh chemical reactions, expensive
equipment and materials and long reaction times [8], as this
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involves electrochemical oxidation through the method arc
discharge [9]. Carbonization between small compounds is
essential for the bottom-up approach to function. The use of
plasma, thermal deposition, hydrothermal and reactive heat
techniques are all included [9]. These are simple, inexpensive,
environmental friendly and highly effective methods. This
approach has the advantage of aggregating CDs with specific
properties. To synthesize CDs using a bottom-up approach,
citric acid, glucose and urea are the most common precursors
and have been used in many applications [10-12]. In compar-
ison to pyrolysis and other methods, the hydrothermal carboni-
zation approach is claimed to be a green synthetic technique
for producing CQDs [13].

Doped CDs have excellent surface passivation properties
and tunable fluorescence capabilities. It has been demonstrated
that adding heteroatoms to CQDs improves their optical chara-
cteristics [14] and the most often used methods for improving
the optical characteristics of CQDs synthesized from biomass
involve adding heteroatoms like nitrogen, phosphorous and
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sulphur [15,16]. Nitrogen-doped carbon dots (NCQDs) have
various benefits, including electrocatalytic and photocatalytic
applications. Additionally, the same is useful for light-emitting
diode and bioimaging applications [17,18].

Biomedical nanoparticles are typically smaller than their
target biological entities, giving them the special ability to
interact with biomolecules both on the surface of cells and
within the cytoplasm and organelles of the cells. This makes
nanoparticles a promising class of nano-vehicles for targeting
and diagnosing illnesses in their earlier stages. The activity of
many organelles is typically adjusted by pH values and the
misbalance of the same may cause several diseases [19]. There-
fore, it is important to measure the intra-cellular pH value
precisely. A few of the materials that have been developed to
date for pH monitoring are CDs [20], encoded red fluorescent
protein sensors [21], polymer dots by the use of semiconductors
[22] and probes of CQDs [23]. In present study, Dieffenbachia
seguine leaves were used to synthesize nitrogen-doped carbon
dots (NCQDs). The excitation-dependent photoluminescence
characteristics and applicability as a pH sensor were investi-
gated using the hydrothermal process.

EXPERIMENTAL

Fresh Dieffenbachia seguine leaves were collected from
the local region, near the campus of Uttaranchal University,
Dehradun, India. Double distilled water was used throughout
the experimental work. All the chemicals and solvents were
of highest analytical grade and procured form various reputed
commerical sources.

Synthesis of nitrogen-doped carbon dots (NCQDs): A
systemic diagram of the process of synthesis of NCQDs by
the hydrothermal method. Fresh leaves of Dieffenbachia seguine
were washed throughly with distilled water and then dried at
room temperature. After adding 5 g of dried leaves and 60 mL
of water to an autoclave, the mixture was heat ed at 200 ºC for
2 h in the furnace. Then, 1.5 mL of ethylenediamine was added
to 15 mL of CQDs solution and placed in the refrigerator at
200 ºC for 3 h and then then allowed to cool at room tempera-
ture. The resulting solution was centrifuged and filtered to to
remove the large particles. After drying at 75 ºC, a solid particle
was obtained [23].

RESULTS AND DISCUSSION

The resulting nitrogen-doped carbon dots (NCQDs) may
have useful information about their potential performance in
a specific application based on their properties [24]. Several
characterization techniques were employed in this investigation
and their findings are presented here.

Optical studies: Absorption spectra of the synthesized
NCQDs was observed in the range from 200 to 800 nm, with
absorption peak positions respectively at 236, 422 and 464
nm (Fig. 1). The energy band gap was evaluated by using Tauc
equation [25]. For this purpose, the photon energy was plotted
against the photon energy and found to be 3.58 eV.
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Fig. 1. Plot of absorbance versus wavelength and (αhν)2 versus energy

SEM and EDX studies: The SEM was used to examine the
surface shape and porous structure of nitrogen-doped carbon
dots (NCQDs). The SEM images shows some agglomeration
and a flow-shaped particle (Fig. 2a), which might be formed
during the synthesis processing. Fig. 2b predicts the EDX
spectrum of NCQDs. The weight percentage of C and N was
high due to the decomposition of plant material and the addition
of ethylenediamine, respectively. The presence of other elements
in NCQDs was confirmed as a result of the non-washing process
used [26]. The mapping of the elements present in the synthe-
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Fig. 2. SEM image (a) and EDX spectrum (b) of green synthesized nitrogen doped carbon quantum dots (NCQDs)
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sized NCQDs is shown in Fig. 3. This confirms the even distri-
bution of the elements.

Crystallographic studies: The XRD pattern of NCQDs
is shown in Fig. 4 and indicates the crystallinity of the material.
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Fig. 4. Intensity versus 2θ in XRD pattern of NCQDs

Further, the multiple peaks at 2θ = 28.42º, 30.99º, 40.60º, 50.27º
and 66.49º and hkl values of 220, 400, 422-620 were compared
with the standard JCPDS card No. 00-042-0667. The sharp
peak corresponding to 28.42º is stronger than the other planes,
indicating that (220) has the dominant orientation and the peak
clearly indicates the crystallinity of the NCQDs. The sharpness
of the peaks and the absence of unidentified peaks confirmed
the crystallinity and high purity of the NCQDs. The d-spacing
values were measured and found to be 3.06, 2.82, 2.17, 1.77
and 1.37, respectively. Further, particle size was investigated 57
nm of the synthesized particles. Debye Scherrer’s equation was
used to evaluate the particle size and found to be 57 nm [27].

FT-IR studies: Functionalization is a necessary strategy
that gives rise to the unique properties of CDs, which can be
achieved by incorporating various metallic and non-metallic
elements onto the surface of CDs. Most abundantly used non-
metallic dopants include sulphur, nitrogen and phosphorous,
which provide unique catalytic and colorimetric properties and
high performance [28,29]. The spectrum (Fig. 5) shows that
these particles have hydrophilic groups such as N-H (3453
cm–1) on their surface, confirming the good water solubility.
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Fig. 5. FT-IR spectra of NCQDs

In addition, the C-H (2956 cm–1), C=O (1651 cm–1) and C-N
(1556 cm–1) vibrations also appeared. A trough observed at 1550
cm–1 was due to N-H bending and the peaks at 1385 and 1080
cm–1 were due to −C≡N stretching. These findings confirmed that
nitrogen was effectively incorporated into the CQDs’ structure.

Effect of pH effects on fluorescence emission: The solution
of NCQDs was adjusted to a suitable pH range of 2-10 using
either HCl or NaOH solution. Fig. 6a depicts the effect of pH
on the intensity and showed that the fluorescence intensity of
these particles are pH dependent. Fluorescence becomes
stronger with increasing pH. The excitation wavelength of the
sample was adjusted to 350 nm. This result is consistent with
previous research demonstrating that carbon dots emit a signi-
ficant amount of blue light that decreases in the red region, which
is frequently characterized by excitation wavelength dependence
[30]. Fluorescence properties often depend on the CD-specific
surface properties and other factors [31]. Further, the plot of
intensity with pH shows the relationship among them with the
linear correlation coefficient of 0.92 (Fig. 6b). This predicted
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phenomenon claims the potential of the synthesized NCQDs
as a pH sensor material.

Photoluminescence studies: The photoluminescence
spectrum of the synthesized NCQDs was measured at two
excitation wavelengths. The PL emission clearly demonstrates
the excitation dependent photoluminescence (Fig. 7), which
has benefits for a variety of applications including biosensors,
bioimaging and LED devices [32,33].
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Conclusion

In this work, a water-soluble nitrogen doped carbon quantum
dots (NCQDs) was synthesized using Dieffenbachia seguine
leaves using hydrothermal method. The NCQDs exhibited a
consistent morphology, strong fluorescence characteristics,
fluorescence stability, low toxicity and high biocompatibility.
According to preliminary results, the NCQDs have a good
ability to respond to fluorescence as sensing pH material.
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