Du-Lin Kong ${ }^{1 \text { 1,* }}$, Guo-Zhu Li ${ }^{2}$ and Ren-Die Liu ${ }^{2}$
${ }^{1}$ School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
${ }^{2}$ College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P.R. China
*Corresponding author: Tel/Fax: +86 898 66893826; E-mail: 173548977@qq.com

Received: 30 October 2013; Accepted: 3 December 2013; Published online: 22 March 2014; AJC-14978

Diethyl tosyloxybenzylphosphonate was synthesized by the reaction of hydroxybenzylphosphonate with p-toluenesulfonyl chloride characterized by NMR spectroscopy, elemental analyses and X-ray single-crystal diffraction. The possessing parameters: m.f. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{PS}$, monoclinic, P2(1)/n, $\mathrm{a}=8.1087(9) \AA, \mathrm{b}=20.215(2) \AA, \mathrm{c}=12.5201(12) \AA, \alpha=90^{\circ}, \beta=98.7380(10)^{\circ}, \gamma=90^{\circ}, \mathrm{V}=2028.5(4) \AA 3, \mathrm{Z}=4$, $\mathrm{M}_{\mathrm{r}}=398.39, \mathrm{Dc}=1.305 \mathrm{~g} / \mathrm{cm}^{3}, \mu=0.268 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=840, \mathrm{~T}=298(2) \mathrm{K}, \mathrm{R}_{1}=0.0462, \mathrm{wR}_{2}=0.1076$ for 3579 observed reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$.

Keywords: Diethyl tosyloxybenzylphosphonate, Synthesis, Crystal structure.

INTRODUCTION

The biological importance of phosphonates was recognized in the past decade ${ }^{1}$. Among them, α-substituted phosphonates are particularly important in connection with their remarkable biological activities ${ }^{2-4}$. The widespread uses of phosphonates are as enzyme inhibitors ${ }^{5-7}$, botryticides ${ }^{8}$, anti-HIV agents ${ }^{9-10}$, antibacterial agents ${ }^{11}$ and haptens for catalytic antibodies ${ }^{12}$.

In our recent researches, we require p-toluenesulfonyl chloride as the intermediate to synthesize a series of α-oxophosphonic acid derivatives in the hope of looking for new biological compounds. As an extension of the work on structure characterization of α-oxophosphonic acid derivatives, a single crystal of the title compound was subjected to X-ray diffraction experiment.

EXPERIMENTAL

Starting materials were obtained from commercial suppliers and were used without further purification. All melting
points were determined on a Yanaco apparatus and they are uncorrected. NMR spectral data were collected on a Brucker 400 MHz with TMS as an internal standard.

Synthesis: To a solution cooled to $0^{\circ} \mathrm{C}$ of 10 mL methylene chloride, $(2.44 \mathrm{~g}, 10 \mathrm{mmol})$ diethyl hydroxybenzylphosphonate and 2.81 mL of triethylamine was added dropwise over 0.5 h a solution of p-toluenesulfonyl chloride $(1.91 \mathrm{~g}$, 10 mmol) in 10 mL of methylene chloride. The reaction temperature did not exceed $25^{\circ} \mathrm{C}$ during the addition. After an additional 0.5 h of stirring the reaction was allowed to warm to room temperature and stir overnight, filtration and evaporation afforded $3.90 \mathrm{~g}(98 \%)$ of the title compound as a white solid, as shown in Scheme-I. m.p. $63-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCI}_{3}$): $01.21(6 \mathrm{H}, \mathrm{m}) 2.34(3 \mathrm{H}, \mathrm{s}), 4.03(4 \mathrm{H}, \mathrm{m}), 5.65$ $(1 \mathrm{H}, \mathrm{d}, 1=16 \mathrm{~Hz})$ and $7.35(9 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCI_{3}): $016.4(\mathrm{~m}), 21.6,63.5(\mathrm{~m}), 75.8,79.2,128.0,128.2$, $128.3,128.4,128.5,129.0,129.1,129.5,131.8,133.8$ and 144.8. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{PS}: \mathrm{C}, 54.26 ; \mathrm{H}, 5.82$. Found: C, 54.12; H, 5.73.

Scheme-I

Determination of crystal structure: A colourless crystal having approximate dimensions of $0.45 \mathrm{~mm} \times 0.32 \mathrm{~mm} \times$ 0.30 mm was selected for X-ray diffraction study. Diffraction experiments were performed on a Siemens SMART CCD areadetector diffractometer with graphite-monochromatic MoK_{α} radiation $(\lambda=0.71073 \AA)$ at $298 \pm 2 \mathrm{~K}$, scan technique 2.60° $\leq \theta \leq 25.02^{\circ}$. A total of 10016 reflections were collected, of which 3579 reflections were unique with $\mathrm{R}_{\text {int }}=0.0292$. Lp effects and empirical absorption were applied in data corrections. The structure was solved by direct methods and expanded using Fourier techniques and SHELXS-97 program system was used in the solution and refinement of the structure. The nonhydrogen atoms were refined anisotropically. Hydrogen atoms were added according to theoretical model. The final full-matrix least-squares refinement including 258 variable parameters for 3579 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ and converged with unweighted and weighted agreement factors of $\mathrm{R}_{1}=$ 0.0462 and $\mathrm{wR}_{2}=01076$, where $\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0466 \mathrm{P})^{2}+\right.$ $1.0491 \mathrm{P}]$ and $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{C}}{ }^{2}\right) / 3$. The maximum and minimum peaks on the final difference fourier map are corresponding to 0.264 and $-0.264 \mathrm{e} / \mathrm{A}^{3}$, respectively.

RESULTS AND DISCUSSION

Figs. 1 and 2 show the molecular structure and packing diagram of the title compound, respectively. Selected bond distances and angles are listed in Table-1. In the title compound, the dihedral angle formed by the two benzene planes is 6.1 $(1)^{\circ}$ The atom $\mathrm{P}(1)$ has a distorted tetrahedral configuration. The widening of angle $\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(1)\left(115.76(13)^{\circ}\right)$ and narrowing of angle $\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(1)\left(101.62(12)^{\circ}\right)$ from the ideal tetrahedral value are attributed to the Thrope-Ingold effect . The bond $\mathrm{P}(1)-\mathrm{O}(3)(1.454(2) \AA)$ of is much shorter than $\mathrm{P}(1)-$ $\mathrm{O}(1)(1.561(2) \AA)$ and $\mathrm{P}(1)-\mathrm{O}(2)(1.562(2) \AA)$. This is result of the ($\mathrm{d}-\mathrm{p}$) π bonding between 3 d vacant orbital of the P atom and the lone electron pair of the $\mathrm{O}(2)$ atom. These values are basically identical with that of the reference ${ }^{13}$. The two ethoxy groups on the phosphorus atom were unequivalent symmetry. The angular disposition of the bond about atom $\mathrm{S}(1)$ shows a significant deviation from that of a regular tetrahedron, with the largest deviation for the O-S-O angle. The widening of the $\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{O}(6)$ angle, to $120.43(16)$ in the title compound, from the ideal tetrahedral value is presumably the result of the repulsive interaction between the short $\mathrm{S}=\mathrm{O}$ bonds, similar to that observed in related structures ${ }^{14-15}$. The bond length of $S(1)$ $\mathrm{C}(12)(1.749(3) \AA)$ is shorter than that of general S-C $(1.81 \AA)$, which may be attributed to the conjugation of all carbon-carbon bonds in benzene ring and exocyclic sulfur-oxygen double bonds. The orientation of the benzene ring substituent is

Fig. 1. Molecular structure of the title compound

Fig. 2 Packing diagram of the title compound

	TABLE -1				
	SELECTED BOND LENGTHS (\AA) AND ANGLES $\left({ }^{\circ}\right)$ FOR THE COMPOUND				
Bond	Lengths	Bond	Lengths	Bond	
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.41(3)$	$\mathrm{O}(4)-\mathrm{S}(1)$	$1.5863(19)$	$\mathrm{P}(1)-\mathrm{C}(1)$	
$\mathrm{O}(1)-\mathrm{P}(1)$	$1.561(2)$	$\mathrm{O}(5)-\mathrm{S}(1)$	$1.419(2)$	$\mathrm{S}(1)-\mathrm{C}(12)$	
$\mathrm{O}(2)-\mathrm{C}(10)$	$1.431(4)$	$\mathrm{O}(6)-\mathrm{S}(1)$	$1.421(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	
Bond	Angles	Bond	Angles	$1.822(3)$	
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{P}(1)$	$127.9(13)$	$\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{H}(1)$	109.4	Bond	
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{O}(1)-\mathrm{P}(1)$	$120.3(14)$	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.7(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	
$\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$110.3(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	Angles	

influenced by a weak $\mathrm{C}(2)-\mathrm{H}(2) \ldots \mathrm{O}(5)$ interaction, defined by the torsion angle $\mathrm{S}(1)-\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{C}(2)$, while the orientation of the phenyl ring bound to the sulfonyl group is governed by a $\mathrm{C}(13)-\mathrm{H}(13) \ldots \mathrm{O}(6)$ interaction, defined by the $\mathrm{O}(4)-\mathrm{S}(1)-$ $\mathrm{C}(12)-\mathrm{C}(13)$ torsion angle.

ACKNOWLEDGEMENTS

The authors are grateful to Natural Science Foundation of Hainan Province of China (No: 211020) for financial supports.

REFERENCES

. M. Horiguchi and M. Kandatsu, Nature, 184, 901 (1959).
2. S. Bhagat and A.K. Chakraborti, J. Org. Chem., 72, 1263 (2007).
3. K. Ando and T. Egami, Heteroatom Chem., 22, 358 (2011).
4. M. Hosseini-Sarvari, Tetrahedron, 64, 5459 (2008).
5. M.C. Allen, W. Fuhrer, B. Tuck, R. Wade and J.M. Wood, J. Med. Chem., 32, 1652 (1989).
6. E.W. Logusch, D.M. Walker, J.F. McDonald, G.C. Leo and J.E. Franz, J. Org. Chem., 53, 4069 (1988).
7. P.P. Giannousis and P.A. Bartlett, J. Med. Chem., 30, 1603 (1987).
8. L. Maier, Phosphorus Sulfur Silicon, 53, 43 (1990).
9. E. Alonso, E. Alonso, A. Solís and C. del Pozo, Synlett, 698 (2000).
10. N.P. Camp, P.C.D. Hawkins, P.B. Hitchcock and D. Gani, Bioorg. Med. Chem. Lett., 2, 1047 (1992).
11. F.R. Atherton, C.H. Hassall and R.W. Lambert, J. Med. Chem., 29, 29 (1986).
12. R. Hirschmann, A.B. Smith, C.M. Taylor, P.A. Benkovic, S.D. Taylor, K. Yager, P. Sprengeler and S. Benkovic, J. Sci., 265, 234 (1994).
13. Z.Q. Shang, R.Y. Chen and Y. Hang, Chinese J. Struct. Chem., 25, 1453 (2006).
14. R.L. Beddoes, L. Dalton, J.A. Joule, O.S. Mills, J.O. Street and C.I.F. Watt, J. Chem. Soc. Perkin Trans. II, 787 (1986).
15. J.G. Rodriguez, F. Temprano, C. Esteban-Calderon, M. Martinez-Ripoll and S. Garcia-Blanco, Tetrahedron, 41, 3813 (1985).

