

Preparation and Denitrifying Performance of V2O5-MoO3/TiO2-CeO2/H-Mordenite†

RUJUN XUE*, CHUNYANG CHEN, QINGCHAO WANG, MIN ZHOU and SHUFEN CHEN

School of Chemical Engineering and Technology, Anhui University of Science and Technology, Huainan 232001, P.R. China

*Corresponding author: Tel: +86 554 6631981; E-mail: klzhu@aust. edu.cn

Published online: 10 March 2014;

AJC-14859

With MoO₃ as additive, V₂O₅ coatings was loaded to H-mordenite zeolite-TiO₂ composite carrier to prepare V₂O₅-MoO₃/TiO₂-CeO₂/HM as NO_x SCR catalyst. X-Ray diffraction, N₂ adsorption-desorption and NH₃ temperature programmed desorption (NH₃-TPD) techniques were used to characterize the structure, surface area, acidity of the catalyst. Denitration performance of the catalyst was investigated using fixed-bed micro-reactor. The effect of V₂O₅ content on denitrification performance was studied extensively. Experimental results show that H-mordenite zeolite is beneficial to increase the specific surface area of the TiO₂ support and improve V₂O₅ dispersing on the carrier in a monolayer state. The catalyst with 8 % V₂O₅ load displays optimal denitration performance of the V₂O₅ load \ge 8 % V₂O₅, the catalytic activity decrease. MoO₃ has help to vanadium-base catalyst and the denitration performance of the V₂O₅/CeO₂-TiO₂/HM with MoO₃ additive increased and NO conversion reached to 92 %.

Keywords: V₂O₅-MoO₃/TiO₂-CeO₂/H-mordenite catalyst, Denitration performance, Preparation.

INTRODUCTION

Nitrogen oxides are the main component of air pollution. At present, the main NO_x elimination technologies are to use flue gas denitrification method. Within them selective catalytic reduction (SCR) is the most widely used manner due to its high efficiency and high selectivity. The catalyst can be divided into three types, namely supported noble metal, composite metal oxide and zeolite catalyst. In the early times, precious metal-based catalyst was the main catalyst of SCR¹. In recent years, of metal oxide such as V2O5-WO3 and V2O5-MoO3 loaded on TiO₂ have replaced noble metal catalysts to be used in traditional SCR². And molecular sieve catalyst replaced the noble metal catalysts for SCR purification of high temperature combustion exhaust gas due to its good thermal stability. But the catalyst activity of the zeolite catalyst is poor, studies referred to various metal ions exchanged onto zeolite to strengthen the SCR catalytic activity were conducted^{3,4}.

Vanadium based catalyst having a moderate oxidationreduction capacity is widely used in selective catalytic reduction of NO_x and in elimination of SO_x and NO_x . But the presence form of vanadium oxide, surface acidity and oxidationreduction capacity of the catalyst and the like were affected greatly by the carrier². Titanium dioxide has greater surface area and pore size than γ -Al₂O₃, is either beneficial to the diffusion of reactants or conducive to loading high content V₂O₅ which making TiO₂-base catalysts with higher SCR activity⁵. But V₂O₅/TiO₂ catalyst also has its drawbacks *i.e.*, its disabled effect by alkali metal⁶; easy to be sintered for the poor thermal stability of TiO₂ support and tendency of existing in polycrystalline form⁷. These confine the operating temperature of the catalyst lower than 420 °C. At higher temperatures the selectivity of the catalyst would drop down.

In view of the disadvantages of the existing SCR catalysts for NO_x, this study prepare the catalyst with zeolite and TiO₂ as composite carrier, V₂O₅ coating as a active component which convert NO_x and by introducing MoO₃ intoV₂O₅ as the additive to enhance its SCR activity and selectivity. Furthermore modifying the TiO₂ with CeO₂ to stabilize the crystal phase and grain size of TiO₂ for increasing its surface area. Cerium dioxide also has an excellent ability to store and release oxygen, which is helpful to improve the catalytic activity and selectivity. Dispersing TiO₂ onto the zeolite could increase the acidity of TiO₂ carrier and avoid its pore structure collapsed during the heat treatment by the aid of the acidity and the heat stability of zeolite, thus ensuring the pore structure and specific surface area of the TiO₂.

[†]Presented at The 7th International Conference on Multi-functional Materials and Applications, held on 22-24 November 2013, Anhui University of Science & Technology, Huainan, Anhui Province, P.R. China

EXPERIMENTAL

Catalyst preparation: H-mordenite (HM) was obtained with Na-mordenite (NaM, Dalian catalyst plant) by means of ion exchange with NH₄Cl solution and calcined at 550 °C for 4 h subsequently.

With cyclohexane, Triton X-100 and *n*-butanol constituted the oil solution. Then TiCl₄ and aqueous solution of cerium nitrate were added into half oil solution and stirred to obtain microemulsion I. Aqueous solution of ammonia was added to other half oil solution to formulate microemulsion II, in which 5.5 g HM was uniformly dispersed. Under continuously stirring, microemulsion I was mixed with microemulsion II slowly and reacted for 1 h at the pH 8.5 value. Following this, the catalyst precursor was filtered, washed thoroughly with with ethanol-acetone solvent and dried for 4 h at 105 °C, calcined at 500 °C for 3 h. Thus CeO₂-TiO₂/HM catalyst carrier was obtained.

Using deionized water as solvent, oxalic acid, ammonium metavanadate and ammonium molybdate were dissolved. Then CeO_2 -TiO₂/HM catalyst carrier was added in under stirring. Evaporate the solvent slowly till the materials become sticky shape with 90 °C water bath. The viscous material was dried at 120 °C for 3 h, calcined at 450 °C for 3h to achieve the catalyst.

Catalyst characterization: X-Ray diffraction patterns were collected using a Shimadzu XRD-6100 X-ray diffractometer equipped with a graphite monochromator, operating at 40 kV and 40 mA and employing nickel-filtered CuK_{α} radiation ($\lambda = 1.5418$ Å).

Nitrogen adsorption/desorption at 77 K were measured using a Micromeritics TriStar3000 equipment after the samples were degassed $(1.33 \times 10^{-2} \text{ Pa})$ at 300 °C overnight. The specific surface area was calculated following the method of Brunauer, Emmet and Teller (BET).

 NH_3 temperature programmed desorption (NH_3 -TPD) were measured using a Tianjin Xianquan TP-5000 adsorption instrument.

Evaluation of catalytic activity: The catalytic experiments were carried out in a fixed bed quartz tubular flow reactor (i.d. 6 mm, length 400 mm) at atmospheric pressure. The amount of the catalyst was 300 mg. The feed consisted of a mixture of $CH_4/NO/O_2/He$ with a volume ratio of 1/1/20/78. The flow rate was 300 mL/min. Experiments were carried out at 300-550 °C, program heating rate 2 °C/min. The feed and the reaction products were analyzed on-line by online gas chromatograph (Type GC-122, Shanghai). The nitrogen oxides were measured with a NOVA 300 CLD Chemiluminescent NO and NO_x analyzer.

Catalytic activity is calculated by the following formula: Conversion of NO = moles of (NO introduced – NO in exit gas) \times 100 %/ moles of NO introduced

RESULTS AND DISCUSSION

XRD characterization of the sample: Fig. 1 is the XRD patterns of $0.5 \ \% CeO_2-20 \ \% TiO_2/HM$. The diffraction peaks between 5-32° range attribute to zeolite, the peaks are sharp and well-defined, implying that good crystallinity of the mordenite. The diffraction peaks at 25° and beyond 35°

attribute to anatase TiO₂, the peaks are lower and wider, indicating a very small grain size of TiO₂. There is no characteristic diffraction peak of CeO₂ in Fig. 1. The reason is small amounts of CeO₂ doped into the TiO₂ crystal phase cannot be detected *via* XRD.

Influence of TiO₂ loading on Specific surface area of CeO₂-TiO₂/HM: The specific surface area data of the CeO₂-TiO₂/HM samples with different TiO₂ load measured in the experiments are shown in Table-1.

TABLE-1						
	SPECIFIC SURFACE AREA OF CeO2-TiO2/HM					
WITH DIFFERENT TiO ₂ LOAD, m ² /g						
	HM	10 %	20 %	30 %	40 %	50 %
		TiO ₂ /HM				
	307	132	151	139	126	126
-						

It can be seen from the data in Table-1 that profiting from the higher specific surface area of the mordenite, a higher TiO₂ load could be carried on HM. Furthermore, the zeolite added during the preparation of TiO₂ could effectively reduce the free energy of the TiO₂ crystal nucleation, which helped to generate smaller grains, therefore would increase the specific surface area of TiO₂. However, the data in Table-1 also shown that after the load of $TiO_2 > 20$ %, the specific surface area of CeO2-TiO2/HM decreased, this was because that at this time TiO₂ not only deposited on the surface of the zeolite, also caused the zeolite pore blockage. Therefore, the optimum load of TiO_2 on zeolite is 20 % preferably, which could give the largest surface area of CeO2-TiO2/HM. The higher of TiO2 specific surface area, the larger V₂O₅ load could reach on the one hand, more favorable of vanadium oxide species well dispersed on the carrier surface on the other hand, which would form more V₂O₅ active sites so that the SCR catalyst may provide a higher activity.

Surface acidity of the catalysts: The surface acidity of the catalysts was analyzed *via* NH₃-TPD (Fig. 2).

Fig. 2. NH₃-TPD curves of catalysts. (1) V₂O₅/TiO₂; (2) V₂O₅/CeO₂-TiO₂/ HM; (3) MoO₃-V₂O₅/CeO₂-TiO₂/HM

Generally, low-temperature desorption peak (< 400 °C) corresponds to the weak acid site, the middle-temperature desorption peak (400-500 °C) corresponds to the moderate acid sites and the high-temperature peak (> 500 °C) corresponds to the strong acid sites. As can be seen from Fig. 2, all catalysts at *ca*. 150 °C have a desorption peak corresponding to the weak acid sites on the catalyst; V_2O_3/CeO_2 -TiO₂/HM at about 400 °C emerged a broad peak, indicating that the catalyst was rich in moderate acid site; the NH₃-desorption amount of MoO₃-V₂O₅/CeO₂-TiO₂/HM in the whole temperature ranges significantly increased, implying that the catalyst was rich in acidic site amount.

Denitrification performance of the catalysts with different V₂O₅ content: It can be seen from Fig. 3 that the active ingredient V₂O₅ content has a great influence on catalytic activity and MoO₃-V₂O₅ (8 %)/CeO₂-TiO₂/HM possesses the best low-temperature catalytic activity. When compared to MoO₃-V₂O₅ (5 %)/CeO₂-TiO₂/HM and MoO₃-V₂O₅(10 %)/ CeO₂-TiO₂/HM, it's NO conversion at 350 °C was higher 16 and 12 %, respectively. The high-temperature activities of MoO₃-V₂O₅ (5 %)/CeO₂-TiO₂/HM and MoO₃-V₂O₅ (8 %)/ CeO₂-TiO₂/HM were comparable both larger than that of MoO₃-V₂O₅(10 %)/CeO₂-TiO₂/HM and their NO conversion at 550 °C closed 82 % while that of MoO₃-V₂O₅(10 %)/CeO₂-TiO₂/HM was approximately 42 %. On the other hand, hightemperature activity of the catalyst would decrease due to the enhanced V₂O₅ polymerization degree under high temperature. Fig. 3 showed the operating temperature window (NO conversion \geq 80 %) of MoO₃-V₂O₅(8 %)/CeO₂-TiO₂/HM is more wider (320-550 °C) than that of the other catalysts, so the 8 % V_2O_5 content in the coating is the most suitable content of the active ingredient. The reason is as follows: when the V₂O₅ load on the support is low (< 8 %), vanadia can be well dispersed to form isolated tetrahedral vanadate species, which is the active center of the catalyst. With the increase of V₂O₅ load, the active center of the catalyst increases and catalytic ability raise. Vanadia species may form polymeric two-dimensional network in distorted tetrahedral and square-pyramidal coordination accompanying the increase of V2O5 load and the increased polymerization degree would reduce the number of active sites and decrease activity of the catalyst. Finally, at higher load (> 15 %), the main present form of V_2O_5 was three dimensional crystallites in octahedral coordination⁷, the catalysis of such a crystalline phase is very limited and makes the catalytic activity decrease.

Conclusion

Using molecular sieve as support, TiO_2 as the carrier to prepare V_2O_5 -based multi-component catalyst, the molecular sieve-TiO₂ composite carrier provided a larger surface area for loading more V_2O_5 active component. High V_2O_5 load and dispersion are helpful to increase acid active-sites so that the catalyst has a high activity. When V_2O_5 content is more than 8 %, the increased V_2O_5 polymerization degree makes the catalytic activity decrease. Catalyst MoO_3 - $V_2O_5(8 \%)/CeO_2$ -TiO₂/HM displays the best denitration activity (320-550 °C).

REFERENCES

- O.S.G.P. Soares, J.J.M. Órfão and M.F.R. Pereira, *Catal. Lett.*, **139**, 97 (2010).
- Z.G. Li, J. Ma, W.L. Wang, C.L. Wu, J.Q. Wang, C.Q. Yang and M.Q. Shen, *Ind. Catal.*, 5, 30 (2011).
- 3. G.S. Qi, Y.H. Wang and R.T. Yang, Catal. Lett., 121, 111 (2008).
- L.F. Córdoba, G.A. Fuentes and C.M. de Correa, *Micropor. Mesopor. Mater.*, 77, 193 (2005).
- 5. M. Kobayashi and K. Miyoshi, Appl. Catal. B, 72, 253 (2007).
- F.S. Tang, B.L. Xu, H.H. Shi, J.H. Qiu and Y.N. Fan, J. Therm. Anal. Calorim., 1, 209 (2003).
- 7. S.S.R. Putluru, A. Riisager and R. Fehrmann, *Appl. Catal. B*, **97**, 333 (2010).