

Synthesis and Optical Property of ZnO/SiO2 Nanocomposite Cryogels†

LIFEN SU¹, LEI MIAO^{2,*}, MING ZHANG³, JIASHENG QIAN¹, RU XIA¹, BIN YANG¹ and PENG CHEN¹

¹Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P.R. China

²Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China

³Department of Physics, Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan

*Corresponding author: Fax: +86 551 63861480; E-mail: ausulf@sina.com; Fax: +86 20 87035351; E-mail: maiolei@ms.giec.ac.cn

Published online: 1 March 2014;

AJC-14742

In this paper, ZnO cryogels with a dopant of SiO₂ with molar ratio of 9:1 to 1:1 were prepared by sol-gel technology and dried by a novel vacuum freeze drying using a co-precursor method. The as-prepared ZnO/SiO₂ nanocomposites were annealed in air at 250, 500 and 800 °C for 45 min, respectively. The structure and morphology of the nanocomposites were determined by X-ray diffraction (XRD) and field emission scanning electron microscopy. The optical properties were estimated not only by UV-visible spectrometer but also theoretical calculation. The annealed nanocomposites exhibited hexagonal Wurtzite structure ZnO and whose crystallinity became better as an increase of annealing temperature. The amounts of doping SiO₂ affect the optical band gaps and morphology of ZnO/SiO₂ nanocomposites significantly. After annealing, the obtained ZnO nanorods grow up in size from the SEM images with annealing temperature ranging from 250 to 500 °C and flowerlike ZnO was formed with tetragonal pillars at 800 °C.

Keywords: Optical band gap, ZnO/SiO₂ nanocomposites, Cryogels, Co-precursor method.

INTRODUCTION

Zinc oxide is a hot semiconductor material due to its unique electronic, optical and acoustical properties¹⁻⁶. ZnObased composites are of considerable interest in ceramics technology⁷ for applications as sensors, semiconductor devices and varistors⁸, which usually call for smaller especially nanoscale particles with special morphology. In order to control particle sizes and their distributions of the composites, silicon dioxide is popular as host matrices⁹ for insertion of ZnO nanoparticles due to its unique properties¹⁰. The ZnO/SiO₂ films have received lots of attention because of their particular applications as luminescent materials^{11,12} and gas sensors¹³. In addition, most of the reported ZnO/SiO2 core/shell composites were usually prepared by hydrothermal¹⁴ and atomic-layer deposition (ALD) methods¹⁵. However, these processes are too expensive and unwanted reactions between nanoparticles and silica matrix occurred during temperature treatments from 500 °C onwards because of the depolymerization of host matrix¹⁶. Recently, Anedda et al.¹⁶ and Cui et al.¹⁷ have reported a new sol-gel route by using a self-combusion and epoxideassisted process to prepare ultrafine ZnO/SiO₂ composites. Up to now, the works of finding a low-cost approach and controlling the shape, size and properties of the ZnO/SiO₂ nanocomposites are still under way for researchers.

In the present study, the low-cost sol-gel technology followed by a novel vacuum freeze drying¹⁸ using a co-precursor method was utilized to prepare the ZnO/SiO_2 nanocpmposites in a simpler way. The structural and optical properties of the obtained ZnO/SiO_2 nanocomposites are investigated by both experimental and calculational methods.

EXPERIMENTAL

The chemicals used for the preparation of alcogels were tetraethoxysilane (TEOS, $SiO_2 \ge 28.5$ %), zinc acetate [Zn(CH₃COO)₂·2H₂O, 99 %], acetic acid (99.5 %), *tert*-butyl alcohol (TBA, 99 %), hydrochloric acid (36.5 %) and ammonia (28 %) were purchased from Aladdin Reagent Database Inc. (China). The double distilled water was prepared in the authors laboratory.

The wet gels were synthesized *via* a sol-gel technology using co-precursor method as reported¹⁹. In the case of ZnO

[†]Presented at The 7th International Conference on Multi-functional Materials and Applications, held on 22-24 November 2013, Anhui University of Science & Technology, Huainan, Anhui Province, P.R. China

precursor solution, $Zn(CH_3COO)_2 \cdot 2H_2O$ was added to distilled water and acetic acid was added as a catalyst then the mixed solution was vigorously stirred for 3 h at 60 °C. The molar ratio of $Zn(CH_3COO)_2 \cdot 2H_2O:H_2O:acetic acid were taken as$ 1:40:1.0 × 10⁻³. Then for the SiO₂ solution, tetraethoxysilane,*tert*-butyl alcohol, H₂O with appropriate HCl was mixed undercontinuous stirring for complete hydrolysis with molar ratioat 1:7:3.7:5.7 × 10⁻³. In order to get the ZnO/SiO₂ wet gels, theobtained solutions were mixed under constant stirring for 10min with calculated amounts, followed by the addition ofammonia (NH₄OH) catalysis for condensation. The alcosolswere then transferred to a culture dish and gelled. The gelswere dried by a vacuum freeze dryer (Christ Alpha 2-4 LSC,Germany). Finally, the obtained cryogels were annealed at 250,500 and 800 °C for 45 min, respectively.

The crystallizing nature of the nanocomposite powders was examined by X-ray diffraction (XRD, X'Pert Pro MPD/ PW3040/60, Holland). The absorbance spetra of the nanocomposites were measured by a UV/VIS spectrometer (Lambda 750, Perkin Elmer, USA). The calculation of energy gap was carried out by using the software of CASTEP (Cambridge Serial Total Energy Package)²⁰. The microstructure of the ZnO/ SiO₂ nanocomposites was observed by a Field Emission Scanning Electron Microscopy (FE-SEM, Hitachi S-4800, Japan).

RESULTS AND DISCUSSION

The XRD patterns of ZnO/SiO₂ nanocomposites with different molar ratio and annealing temperature are shown in Fig. 1. They all exhibited hexagonal wurtzite structure of ZnO (JCPDS 36-1451) which are in good agreement with the previous result³ and no indication of a phase SiO₂ is found. The peak intensities of the composites annealed at 250 °C become weaker with more content of dopant SiO₂, which indicate that SiO₂ has been successfully doped into the ZnO lattice and thus the weakened peaks occur. Compared with the full width at half maximum (FWHM) for (101) peaks in Fig. 1, it can be observed that the crystallinity of ZnO tends to be better with less dopant SiO₂ and an increasing annealing temperture. This is due to that higher temperature can contribute to the growth of ZnO crystallinity. When the annealing temperture is higher than 500 °C, the improvement of crystallinity is very little.

Fig. 1. XRD patterns of ZnO/SiO₂ nanocomposites with different molar ratio and the values of FWHMs for (101) peaks

The effect of SiO₂ doping concentration on the optical band gap of ZnO was further investigated by UV-visible absorption spectroscopy. Fig. 2 shows the absorbance of ZnO/ SiO₂nanocomposites annealed at 250 °C with different molar ratio. A red shift was observed in absorption band edge of the nanocomposites with an increasing dopant of SiO₂, which may be ascribed to the incorporation of SiO₂ inside ZnO lattice. It is also observed that two peaks exist at 400 nm (3.1 eV) and 220 nm (5.6 eV) due to ZnO and SiO₂, respectively. The coexisting peaks reveal that most of the ZnO/SiO₂ cryogels are compounds. The optical band gaps of ZnO and SiO₂ are known as 3.4 and 9.0 eV, respectively. However, the peaks at 220 nm become stronger and the optical band gap tends to be that of SiO_2 with an increase of dopant SiO_2 . The photon energy of the peak value observed on the absorbance deviates apparently from the corresponding optical band gap of pure ZnO and SiO₂. These indicates that Si atom inserts the ZnO lattice leading to lower optical band gap of ZnO and similarly Zn atom dopes into the SiO₂ system resulting in lower optical band gap of SiO₂.

Fig. 2. Absorbance of ZnO/SiO₂ nanocomposites annealed at 250 °C with different molar ratio

The first-principle pseudopotential method based on the density-functional theory $(DFT)^{21}$ was utilized to study the effect of different molar ratio of ZnO/SiO₂ on the optical band gap by investigating the electron structure of the nanocomposites. The ultrasoft pesudopotential generated by the scheme of Vanderbilt²² was applied in this calculation. As for the method of approximation of the exchange-correlation term of the DFT, local density approximation (LDA) was used. Pseudo atomic calculation for O $(2s^22p^4)$, Si $(3s^23p^2)$, Zn $(3d^{10}4s^2)$, was performed. The local density approximation calculation is likely to give a narrower band gap than that of the observed result. Therefore, the band gap is adjusted to account for the scissors correction.

The Fermi level is set to be 0 eV and other energy levels are determined by comparing with Fermi level. The calculated densities of states have been shown in Fig. 3. It is obvious that the 3s and 3p orbitals of Si have been formed the impurity energy level in the case of Si doping into ZnO, which leads to the decrease of the energy gap of ZnO. While in the case of Zn incorporating into SiO₂, the impurity energy level was derived from the 3d orbital of Zn, which results in lower energy gap of SiO₂.

Fig. 3. Calculated densities of states: (a) pure ZnO, (b) Si doping ZnO, Zn/Si = 7, (c) pure SiO₂ and (d) Zn doping SiO₂, Si/Zn = 5

The absorption coefficient and the band gap energy can be calculated by eqn. 1^{23} .

$$\alpha h \gamma = A (h \gamma - E_{\sigma})^{1/2}$$
(1)

where $h\gamma$ is the incident photon energy, E_g is the band gap energy and A is a constant. Fig. 4 shows the relation of calculational and experimental data of energy gap derived from different molar ratio of Zn/Si. Obviously, the theoretically calculated values of energy gaps are in good agreement with those of experiments. Therefore, the dopant of SiO₂ plays an important role on the optical band gap of ZnO/SiO₂ nanocomposites.

Fig. 4. Relation between experimental and calculational data of energy gap derived from different molar ratio of Zn/Si. The red line is the ExpGro 2 fit of the calculational data

The SEM images of $ZnO/SiO_2 = 9:1$ nanocomposites annealed at different temperature are shown in Fig. 5. The annealing temperature affects the morphology of the nanocomposites significantly. The doping SiO₂ grains like spheres are embedded in large ZnO nanorods lying with irregular directions. The ZnO nanorods grow up in size as the annealing temperature increase from 250 to 500 °C. However, at 800 °C, flowerlike Wurtzite ZnO with special tetragonal pillars centering to one point were formed, which are different from the ZnO morphology^{24,25} may be ascribed to the novel synthesis and drying method of the study.

Fig. 5. (a), (b) and (c) are the SEM images of ZnO/SiO₂ = 9:1 annealed at: 250 °C, 500 °C and 800 °C, respectively. (d) is the magnified SEM image in (c)

Conclusion

ZnO/SiO₂ nanocomposites are successfully fabricated by a low-cost co-precursor method followed by vacuum freeze drying. The experimental and calculational results show that the optical properties of the nanocomposites were affected by the dopant of SiO₂. The ZnO nanorods grow up in size as an increase of the annealing temperature from 250 to 500 °C. However, a flowerlike Wurtzite ZnO sample with special tetragonal pillars can be formed at 800 °C. These ZnO/SiO₂ nanocomposites will open up its applications in nanoelectronic device, catalysis, drug delivery system and sensor.

ACKNOWLEDGEMENTS

This work was financially supported by Anhui University Doctoral Scientific Research Funds 02303319.

REFERENCES

- J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao and C.H. Yan, *Chem. Mater.*, 14, 4172 (2002).
- 2. J.M. Wang and L. Gao, J. Mater. Chem., 13, 2551 (2003).
- Z. Gui, J. Liu, Z.Z. Wang, L. Song, Y. Hu, W.C. Fan and D.Y. Chen, J. Phys. Chem. B, 109, 1113 (2005).
- L. Guo, Y.L. Ji, H. Xu, P. Simon and Z. Wu, J. Am. Chem. Soc., 124, 14864 (2002).
- D. Ledwith, S.C. Pillai, G.W. Watson and J.M. Kelly, *Chem. Commun.*, 20, 2294 (2004).
- J.H. Park, H.J. Choi, Y.J. Choi, S.H. Sohn and J.G. Park, J. Mater. Chem., 14, 35 (2004).

- 7. S. Lu, H. Liu, L. Zhang and X. Yao, *Chin. Sci. Bull.*, **41**, 230 (1996).
- E.A. Abel-Aal, A.A. Ismail, M.M. Rashad and H. El-Shall, *J. Non-Cryst.* Solids, 352, 399 (2006).
- 9. R. Moleski, E. Leontidis and F. Krumeich, J. Colloid Interf. Sci., 302, 246 (2006).
- 10. K. Kanamori, J. Ceram. Soc. Jpn., 119, 16 (2011).
- 11. S. Chakrabarti, D. Ganguli and S. Chaudhuri, *Phys. Status Solidi A*, **201**, 2134 ((2004).
- 12. W.C. Chen, Mater. Lett., 59, 1239 (2005).
- V. Musat, E. Fortunato, S. Petrescu and A.M. Botelho do Rego, *Phys. Status Solidi A*, **205**, 2075 (2008).
- F. Li, X. Huang, Y. Jiang, L. Liu and Z. Li, *Mater. Res. Bull.*, 44, 437 (2009).
- J. Hwang, B. Min, J.S. Lee, K. Keem, K. Cho, M.Y. Sung, M.S. Lee and S. Kim, *Adv. Mater.*, 16, 422 (2004).
- R. Anedda, C. Cannas, A. Musinu, G. Pinna, G. Piccaluga and M. Casu, J. Nanopart. Res., 10, 107 (2008).
- 17. H. Cui, M. Zayat and D. Levy, J. Alloys Comp., 474, 292 (2009).
- 18. L.F. Su, L. Miao, G. Xu and S. Tanemura, *Adv. Mater. Res.*, **105**, 852 (2010).
- 19. L.F. Su, L. Miao and S. Tanemura, *Mater. Sci. Forum*, **663-665**, 1242 (2010).
- M.C. Payne, T.A. Arias and J.D. Joannopoulos, *Rev. Mod. Phys.*, 64, 1045 (1992).
- 21. W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965).
- 22. D. Vanderbilt, Phys. Rev. B, 41, 7892 (1990).
- R. Elilarassi and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 22, 751 (2011).
- K. Han, Z. Zhao, Z. Xiang, C. Wang, J. Zhang and B. Yang, *Mater. Lett.*, 61, 363 (2007).
- S. Chakraborty, A.K. Kole and P. Kumbhakar, *Mater. Lett.*, **67**, 362 (2012).