

Phytochemical Investigations on Tribulus longipetalus

MUHAMMAD IMRAN ANJUM^{1,2}, EJAZ AHMED^{3,*}, AHSAN SHARIF³, ABDUL JABBAR¹, ABDUL MALIK⁴ and NAYAB BATOOL³

¹Department of Chemistry, Baghdad-ul-Jadid Campus, The Islamia University Bahawalpur, Bahawalpur, Pakistan ²Post Graduate Department of Chemistry, Government SadiqEgerton College Bahawalpur, Bahawalpur, Pakistan ³Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan ⁴International Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

*Corresponding author: E-mail: dr.ejaz.ahmed@gmail.com

Received: 17 June 2013;	Accepted: 12 September 2013;	Published online: 15 February 2014;	AJC-14704
The bioassay directed phytochemical investigations of <i>Tribulus longipetalus</i> have resulted the isolation of eighteen compounds and their structures havebeen elucidated by extensive use of modern spectroscopic (UV, IR, EIMS, HREIMS, ¹ H NMR, ¹³ C NMR, FAB +ve, FAB -ve) techniques. All the compounds have been isolated for the first time from this species.			

Keywords: Phytochemical, Tribulus longipetalus, Spectroscopy.

INTRODUCTION

Tribulus is very important genus of the family zygophyllaceae and it grows as shrubs in tropical and subtropical regions throughout the world. The genus Tribulus comprises about 20 species and represented by 4 species in Pakistan¹. Tribulus longipetalus, locally known as bhakri, is a prostrate, green or grayish-white in colour. Its leaves are 1-4 cm long and flowers are mostly yellow in colour. The fruit of this plant is broad and somewhat pointed. The plant possesses cooling, demulcent, diuretic, tonic aphrodisiacs aperients properties and its fruit is used in urinary disorders, impotence, heart diseases. The seeds of *T. longipetalus* are known to be used in diseases of kidney stone, gout and hemorrhages². Tribulus longipetalus has a syn. name Tribulus alatus. No literature is available with the name Tribulus longipetalus, but a little bit work has been reported for the Tribulus alatus. Literature survey revealed that only three steroidal saponins from the MeOH extract of the aerial parts of the Tribulusalatus Del. have so far been reported³. In the present study eighteen compounds have been isolated for the first time from the methanolic extract of the whole plant of T. longipetalus. They were identified as 1triacontanol⁴ (1), hexacosanoic acid⁵ (2), tetracosanoic acid⁶ (3), benzoic acid⁷ (4), 2-hydroxybenzoic acid⁸ (5), 4-ethoxy benzoic acid⁹ (6), 3,5-dimethoxybenzoic acid¹⁰ (7), β sitosterol⁴ (8), β -amyrin¹¹ (9), stigmasterol¹² (10), 5 α ,8 α epidioxyergosta-6,9(11),22-trien-3 β -ol¹³ (11), ursolic acid^{4,10} (12), cyclostenol¹⁴ (13), oleanolic acid¹⁵ (15), 5,6-dihydroxy4,7-dimethoxy-2-methylanthracene-9,10-dione¹⁶ (**15**), 1, 3dihydroxycyclolanosterol¹⁷ (**16**), stigmasterol 3-*O*- β -Dglucopyranoside¹⁵ (**17**) and β -sitosterol 3-*O*- β -D-glucopyranoside¹⁸ (**18**), (Fig. 1).

EXPERIMENTAL

UV and IR spectra were recorded on Hitachi-UV-3200 and Jasco-320-A spectrometers, respectively. ¹H and ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer with tetramethylsilane (TMS) as an internal standard. The 2D-NMR spectra were recorded on a Bruker AMX 500 NMR spectrometer. Optical rotations were measured on a Jasco DIP-360 digital polarimeter using a 10 cm tube. Mass spectra (EIMS and HR-EIMS, FAB-MS) were measured in an electron impact mode on finnigan MAT 12 and MAT 312 spectrometers and ions were given in m/z (%). TLC was performed on precoated silica gel F254 plates, the detection was done at 254 nm and by spraying with ceric sulphate reagent. Silica gel (E. Merck, 230-400 mesh) was used for column chromatography. Melting points were determined on a gallenkemp apparatus and are uncorrected.

The whole plant of *Tribulus longipetalus Viv*. was collected from Cholistan Desert near Bahawalpur (Pakistan) in April 2008 and identified by Dr. Muhammad Arshad, Plant Taxonomist Cholistan Institute for Desert Studies (CIDS), Islamia University Bahawalpur, Bahawalpur, Pakistan, where a voucher specimen has been deposited.

Fig. 1. Compounds isolated from T. longipetalus

Extraction and isolation: The air dried whole plant (10) Kg) of Tribulus longipetalus were powdered and extracted at room temperature with methanol $(3 \times 15 \text{ L})$. The extract was concentrated under reduced pressure to yield residue 800 g, partitioned with H_2O and *n*-hexane. The *n*-hexane soluble portion was concentrated with rotary evaporator and obtained greenish material 150 g amount. The crude extract was again partitioned between CHCl₃ (180 g), ethyl acetate (50 g), nbutanol (140 g) and H₂O (50 g) soluble fractions. The CHCl₃ soluble fraction (180 g) was subjected to column chromatography over silica gel eluting with *n*-hexane-CHCl₃, CHCl₃ and CHCl₃-MeOH in increasing order of polarity, to obtain 15 fractions (T1-T15). The fraction obtained from *n*-hexane-CHCl₃ (8.0: 2.0) labeled as T2 was again chromatographed over silica gel eluting with same solvent system gave three fractions A1-A3. The fraction A2 obtained from *n*-hexane-CHCl₃ (8.5: 1.5) produced three spots on TLC which were again purified by PTLC using the solvent system n-hexane-EtOAC (8.8:1.2), provided benzoic acid (4), 2-hydroxy benzoic acid (5) and 4-ethoxy benzoic acid (6). The fraction A3 was purified over silica gel column chromatography by using solvent system n-hexane-EtOAC (9.0: 1.0) gave 3,5-dimethoxy benzoic acid (7). The fractions obtained from n-hexane-CHCl₃ (7.0: 3.0) gave five spots on TLC, were combined and rechromatographed over silica gel column chromatography using the solvent system n-hexane-EtOAC (8.5: 1.5) produced three spots on TLC which were combined and purified on PTLC by using the same solvent system gave β -sitosterol (8), β -amyrine (9) and cyclostenol (13), respectively. The portion got from *n*hexane-EtOAC (8.3:1.7) were combined and then rechromatographed over the silica gel column chromatography by using solvent system n-hexane-EtOAC (8.5:1.5) gave two pure compounds stigmasterol (10) and 1-triacontanol (1). The portions which were obtained from n-hexane-CHCl₃ (5.0: 5.0) showed many spots on TLC, again purified by repeated silica gel column chromatography to give four fractions (A-D). The fraction A (n-hexane-CHCl₃, 6.6: 3.4) was again purified by the silica gel column chromatography using same solvent system to provide tetracosanoic acid (3) and 5α , 8α -epidioxyergosta 6,9(11), 22-triene-3- β -ol (11). The fractions B and C were separately treated with the silica gel column chromatography by using the same solvent system n-hexane-CHCl₃ (6.5: 3.5) and (6.4: 3.6) gave ursolic acid (12) and hexacosanoic acid (2), respectively. The fraction D was treated with PTLC using the solvent system *n*-hexane-CHCl₃ in the ratio (6.0:4.0)gave 1,3-dihydroxycyclolanosterol (16) and oleanolic acid (14). The fraction obtained from n-hexane-CHCl₃ (2.0: 8.0) gave many spots on TLC, which on PTLC using solvent system n-hexane-CHCl₃ (3.0: 7.0) provided 5,6-dihydroxy 4,7dimethoxy-2-methyl anthracene 9,10-dione (15) as a major compound while the other compounds were unable to isolate by the available chromatographic techniques. The fractions which were obtained from CHCl₃-MeOH (1.5: 8.5) were combined and rechromatographed over silica gel eluting with CHCl₃-MeOH provided three fractions. The fraction 2 which was obtained from CHCl₃-MeOH (1.7: 8.3) gave two spots on TLC, which on PTLC by using same solvent system afforded stigmasterol-3-O- β -D-glucopyranoside (17) and β -sitosterol-3-O-β-D-glucopyranoside (18), respectively.

1-Triacontanol (1): Colorless crystals, 41 mg, m.p. 86-87 °C. IR (KBr, v_{max} , cm⁻¹): 3520, 3060, 810. EIMS: *m/z* (rel. int.) [M]⁺ 438, 420, 405, 360. HR-EIMS *m/z* 438.4860 (calcd. for C₃₀H₆₂O, 438.4801). ¹H NMR (CDCl₃, 400 MHz) δ : 3.14 (2H, t, *J* = 7.1 Hz, H-1), 1.61 (2H, m, H-2), 1.62-1.29 (54 H, br. s, H-3-H-29), 0.91 (3H, t, *J* = 6.7 Hz, H-30). ¹³C NMR (CDCl₃, 100 MHz) δ : 63.0 (C-1), 32.02 (C-2), 30.0 (C-3), 29.8 (C-4), 29.4-28.8, (C-5-C-28), 21.2 (C-29), 13.7 (C-30).

Hexacosanoic acid (2): White crystals, 38 mg, m.p. 88-89 °C. IR (KBr, v_{max} , cm⁻¹): 3280-2620, 1716, 920. EIMS: *m/z* (rel. int.): [M]⁺ 396 (58), 378 (100), 363 (41), 318, 303. HR-EIMS *m/z* 396.3901 (calcd. for C₂₆H₅₂O₂, 396.3967). ¹H NMR (CDCl₃, 400 MHz) δ : 10.57 (OH), 2.26 (2H, t, *J* = 7.4 Hz) 1.59 (2H, m) 1.29-1.18 (48 H, br, s, 24 × CH₂) 0.90 (3H, t, *J* = 6.4 Hz, CH₃). ¹³C NMR (CDCl₃, 100 MHz) δ : 181.0 (C-1) 33.9 (C-2) 29.9 (C-3) 29.7-29.2 (C-4-C-25), 13.7 (C-26).

Tetracosanoic acid (3): Colorless needles, 22 mg. m.p. 87-88 °C. IR (KBr, v_{max} , cm⁻¹): 3280-2610, 1710, 910. EIMS *m/z* (rel. int.): [M]⁺ 368 (60), 350 (100), 335 (55), 290 (40). HR-EIMS *m/z* 368.3605 (calcd. for C₂₄H₄₈O₂, 368.3654). ¹H NMR (CDCl₃, 400 MHz) δ:10.47 (COO<u>H</u>), 2.21 (2H, t, *J* = 7.4 Hz, H-2), 1.57 (2H, m, H-3), 1.29-1.17 (40 H, br s, 20 × CH₂, H-4-H-23), 0.90 (3H, t, *J* = 6.4 Hz, H-24). ¹³C NMR (CDCl₃, 100 MHz) δ: 180.3 (C-1) 34.2 (C-2) 29.6 (C-3) 29.2-29.0 (C-4-C-23), 13.7 (C-24).

Benzoic acid (4): White crystals, 28 mg, m.p. 122-123 °C. UV (CD₃OD) $\lambda_{max}\log \varepsilon$: 228 (3.62), 272 (3.77), 300 (4.01) nm. HREIMS *m/z* (rel. int.): [M]⁺ 122.0367 (calcd. for C₇H₅O₂, 122.0360). IR (KBr, v_{max} , cm⁻¹): 3260-2610 (COOH), 1705 (C=O). ¹H NMR (CDCl₃, 400 MHz) δ : 11.92 (1H, s, O-H), 8.12 (2H, t, *J* = 8.5 Hz, H-2 and H-6), 7.60 (1H, t, *J* = 8.5 Hz, H-4), 7.46 (2H, t, *J* = 8.5 Hz, H-3 and H-5). ¹³C NMR (CD₃OD, 100 MHz) δ : 180.0 (C-7), 134.5 (C-4), 131.1 (C-1), 130.7 (C-2 and C-6), 130.7 (C-3 and C-5).

2-Hydroxybenzoic acid (5): White crystals, 18 mg, m.p. 159-160 °C. UV (MeOH) λ_{max} nm (log ε): 234 (3.67), 302 (3.98). IR (CHCl₃, ν_{max} , cm⁻¹): 3408, 3246, 2657, 1704, 1626, 812. EIMS *m*/*z* (rel. int.): [M]⁺ 138 (93), 120 (100), 92 (94), 81 (27), 64 (65), 53 (61). HREIMS *m*/*z* 138.0291 (calcd. for C₇H₆O₃, 138.0316). ¹H NMR (CDCl₃, 400 MHz) δ : 7.84 (1H, δ , *J* = 8.5 Hz, H-6), 7.44 (1H, t, *J* = 8.5 Hz, H-4), 6.89 (1H, t, *J* = 8.5 Hz, H-5) and 6.85 (1H, d, *J* = 8.5 Hz, H-3). ¹³C NMR (CDCl₃, 100 MHz) δ : 172.9 (C-7), 162.5 (C-2), 136.6 (C-4), 131.1 (C-6), 119.8 (C-5), 117.8 (C-3) 112.4 (H-1).

4-Ethoxy benzoic acid (6): White crystals, 25 mg, m.p. 195-196°C. IR (CHCl₃, v_{max} , cm⁻¹): 3080, 2400, 1715, 1610 1540. EIMS *m/z* (rel. int.): [M]⁺ 166 (10), 137 (50), 120 (100). HREIMS *m/z*: 166.0615 (calcd. for C₉H₁₀O₃, 166.0630). ¹H NMR (CDCl₃, 500 MHz) δ : 6.85 (2H, dd, *J* = 7.8, 1.6 Hz, H-2 and H-6), 7.95 (2H, dd, *J* = 7.8, 2.2 Hz, H-3 and H-5), 4.20 (2H, q, *J* = 4.9 Hz, OCH₂CH₃) and 1.10 (3H, t, *J* = 6.8 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃, 125 MHz) δ : 122.6 (C-1), 132.1 (C-2, C-6), 115.4 (C-3, C-5), 160.3 (C-4), 66.2 (OCH₂CH₃), 20.1 (OCH₂CH₃) and 167.1 (CO).

3,5-Dimethoxybenzoic acid (7): Colorless crystals, 20 mg m.p. 182.5 °C. UV (MeOH) λ_{max} nm (log ε): 220, 251, 285 nm. IR (KBr, ν_{max} , cm⁻¹): 3550 (OH), 1710 (C=O), 1625 (aromatic). EIMS *m*/*z* (rel. int. %): [M]⁺ 182 (88), 151 (45), 120 (100), 92 (70), 64 (52), 53 (80). HREIMS *m*/*z*: 182.1739 (calcd. for

C₉H₁₀O₄, 182.1706). ¹H NMR (CD₃OD, 400 MHz) δ : 7.09 (2H, d, *J* = 2.0 Hz, H-2 and H-6), 6.72 (1H, d, *J* = 2.1 Hz, H-4), 3.82 (6H, s, 2 × OCH₃). ¹³C NMR (CD₃OD, 100 MHz) δ : 167.5 (COOH), 161.5 (C-3 and C-5), 130.7 (C-1), 105.2 (C-2 and C-6), 101.3 (C-4)

β-Sitosterol (8): Crystallized from acetone, 25 mg m.p. 135 °C, $[\alpha]_D^{27}$ + 35.5° (c = 1.02, CHCl₃). IR (KBr, ν_{max} , cm⁻¹): 3446, 3050, 1650. EIMS m/z (rel. int. %): [M]+ 414 (15), 399 (10), 396 (12), 381 (72), 329 (28), 275 (12), 273 (17), 255 (36). HREIMS *m/z*: 414.3845 (calcd. for C₂₉H₅₀O, 414.3861). ¹H NMR (CDCl₃, 400 MHz) δ: 5.11 (1H, m, H-6), 3.36 (1H, m, H-3), 1.01 (3H, s, Me-19), 0.92 (3H, d, J = 6.2 Hz, Me-21), 0.84 (3H, t, J = 7.0 Hz, Me-29), 0.83 (3H, d, J = 6.5 Hz, Me-26), 0.81 (3H, d, J = 6.5 Hz, Me-27), 0.68 (3H, s, Me-18). ¹³C NMR (CDCl₃, 100 MHz) δ: 140.9 (C-5), 121.9 (C-6), 71.9 (C-3), 56.8 (C-14), 56.2 (C-17), 50.8 (C-9), 50.4 (C-24), 42.6 (C-13), 42.4 (C-4), 40.3 (C-12), 37.3 (C-1), 36.6 (C-10), 36.3 (C-20), 34.0 (C-22), 32.3 (C-7), 32.0 (C-8), 31.8 (C-2), 29.3 (C-23), 28.2 (C-16), 26.2 (C-25), 24.3 (C-15), 23.1 (C-28), 21.1 (C-11), 19.8 (C-27), 19.4 (C-19), 19.1 (C-21), 18.8 (C-26), 11.9 (C-29), 11.4 (C-18).

β-Amyrin (9): Crystallized from ethanol, 30 mg, m.p. 197-198 °C, $[\alpha]_D^{25}$ + 100° (c = 1.15, CHCl₃). IR (KBr, ν_{max} , cm⁻¹): 3510, 3055, 1635, 820. EIMS *m/z* (rel. int. %) [M]⁺: 426 (15), 411 (18), 408 (16), 393 (32), 257 (20), 218 (100), 207 (10), 203 (40) 189 (55). HREIMS m/z 426.3825 (calcd. for C₃₀H₅₀O, 426.3861). ¹H NMR (CDCl₃, 500 MHz) δ: 5.11 (1H, m, H-12), 3.19 (1H, dd, J = 10.0, 4.5 Hz, H-3), 1.08 (3H, s, Me-27), 1.02 (3H, s, Me-23), 1.01 (3H, s, Me-24), 0.96 (3H, s, Me-25), 0.93 (3H, s, Me-29), 0.88 (3H, s, Me-26), 0.85 (3H, s, Me-30) and 0.80 (3H, s, Me-28). ¹³C NMR (CDCl₃, 125 MHz) δ: 144.3 (C-13), 124.1 (C-12), 78.8 (C-3), 54.4 (C-5), 47.7 (C-9), 47.3 (C-18), 46.9 (C-19), 42.3 (C-14), 41.6 (C-22), 40.9 (C-8), 39.4 (C-4), 39.0 (C-1), 37.0 (C-10), 34.0 (C-17), 33.3 (C-29), 33.2 (C-7), 32.9 (C-21), 31.7 (C-20), 28.2 (C-23), 28.0 (C-28), 27.4 (C-2), 26.5 (C-16), 26.3 (C-15), 26.0 (C-27), 23.6 (C-11), 23.3 (C-30), 18.5 (C-6), 16.9 (C-26), 15.6 (C-25), 15.1 (C-24).

Stigmasterol (10): White crystals, 25 mg, m.p. 170-171 °C. $[\alpha]_D^{25}$ 51.5° (c = 1.06, CHCl₃). IR (CHCl₃, v_{max} , cm⁻¹): 3432 (OH), 1648 (C=C). EIMS: m/z (rel. int. %): [M]⁺ 412 (8), 396 (12), 394 (20), 379 (27), 369 (35), 351 (71), 327 (60), 301 (18), 300 (67), 273 (30), 270 (24). HREIMS m/z: 412.3920 (calcd. for C₂₉H₄₈O, 412.3926). ¹H NMR (CDCl₃, 400 MHz) δ : 5.33 (1H, m, H-6), 5.15 (1H, dd, J = 15.2, 8.4 Hz, H-22), 5.02 (1H, dd, *J* = 15.2, 8.6 Hz, H-23), 3.28 (1H, m, H-3), 0.90 (3H, d, *J* = 6.5 Hz, Me-21), 0.83 (3H, d, *J* = 6.6 Hz, Me-26), 0.84 (3H, t, J = 7.0 Hz, Me-29), 0.81 (3H, d, J = 6.5 Hz, Me-27), 0.80 (3H, s, Me-19), 0.65 (3H, s, Me-18). ¹³C NMR (CDCl₃, 100 MHz) & 140.9 (C-5), 138.4 (C-22), 129.4 (C-23), 121.7 (C-6), 71.9 (C-3), 57.0 (C-14), 56.0 (C-17), 51.3 (C-24), 50.3 (C-9), 42.5 (C-13), 42.2 (C-4), 40.5 (C-20), 39.7 (C-12), 37.5 (C-1), 36.6 (C-10), 32.2 (C-8), 32.0 (C-25), 31.9 (C-7), 31.4 (C-2), 28.9 (C-16), 25.4 (C-28), 24.4 (C-15), 21.6 (C-27), 21.3 (C-21), 21.0 (C-11), 19.4 (C-19), 19.0 (C-26), 12.4 (C-18), 12.0 (C-29).

5α,8α-Epidioxyergosta-6,9(11),22-trien-3β-ol (11): White amorphoussolid, 15 mg, $[\alpha]_D^{25}$ -33.0 °C (c = 1.00, CHCl₃). IR (KBr, v_{max}, cm⁻¹): 3440, 3024 and 1640. EIMS: *m/z* (rel. int.): $[M]^+ 426 (28)$, 410 (35), 394 (100), 376 (15), 251 (38). HREIMS *m/z*: 426.641 (calcd. for C₂₈H₄₂O₃, 426.638). ¹H NMR (CDCl₃, 500 MHz) & 6.61 (1H, d, *J* = 8.5 Hz, H-7), 6.30 (1H, d, *J* = 8.5 Hz, H-6), 5.43 (1H, dd, *J* = 6.0, 1.8 Hz, H-11), 5.24 (1H, dd, *J* = 15.1, 8.0 Hz, H-22), 5.17 (1H, dd, *J* = 15.1, 8.5Hz, H-23), 3.98 (1H, m, H-3), 1.09 (3H, s, H-19), 1.01 (3H, d, *J* = 6.6 Hz, H-21), 0.92 (3H, d, *J* = 7.2 Hz, H-28), 0.84 (3H, d, *J* = 6.7 Hz, H-27), 0.83 (3H, d, *J* = 6.5 Hz, H-26) and 0.75 (3H, s, H-18). ¹³C NMR (CDCl₃, 125 MHz) & 142.8 (C-9), 135.8 (C-7), 135.5 (C-22), 132.5 (C-23), 135.2 (C-6), 119.8 (C-11), 83.0 (C-5), 78.5 (C-8), 66.4 (C-3), 56.0 (C-17), 48.3 (C-14), 43.7 (C-13), 42.8 (C-24), 41.3 (C-12), 39.9 (C-20), 38.1 (C-10), 36.2 (C-4), 33.1 (C-25), 32.8 (C-1), 30.8 (C-2), 28.7 (C-16), 25.5 (C-19), 22.8 (C-15), 20.9 (C-21), 20.0 (C-27), 19.7 (C-26), 17.5 (C-28) 12.8 (C-18).

Ursolic acid (12): Colorless needles, 25 mg, m.p. 283-285 °C, $[\alpha]_{D}^{28}$ + 62.5° (c = 1.00, CHCl₃). IR (CHCl₃, ν_{max} , cm⁻¹): 3510, 3050, 1697, 1635, 820. EIMS *m/z* (rel. int.): [M]⁺ 456 (10), 411 (22), 248 (34), 203 (100), 189 (16). HREIMS m/z: 456.3599 (calcd. for C₃₀H₄₈O₃, 456.3603). ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta: 5.11 (1H, m, H-12), 3.19 (1H, dd J =$ 10.0 Hz, J = 4.5 Hz), 1.20 (3H, s, Me-27), 1.07 (3H, s, Me-23), 0.94 (3H, s, Me-25), 0.91 (3H, d, J = 6.6 Hz, Me-30), 0.86 (3H, s, Me-26), 0.81 (3H, s, Me-24), 0.80 (3H, d, J = 6.8 Hz, Me-29). ¹³C NMR (CDCl₃, 100 MHz) δ: 176.2 (C-28), 138.7 (C-13), 125.8 (C-12), 79.1 (C-3), 55.2 (C-18), 52.4 (C-5), 48.9 (C-17), 47.4 (C-9), 42.0 (C-14), 39.6 (C-8), 38.5 (C-1), 37.0 (C-22), 36.1 (C-10), 33.2 (C-7), 30.5 (C-19), 32.3 (C-20), 29.4 (C-15), 27.5 (C-21), 24.6 (C-27), 24.5 (C-16), 27.4 (C-2), 24.0 (C-23) 23.9 (C-11), 23.8 (C-30), 22.4 (C-29), 18.3 (C-6), 17.6 (C-26), 15.7 (C-25) 15.4 (C-24).

Cyclostenol (13): Colorless crystals, 28 mg, m.p. 221-222 °C. $[\alpha]_D^{30}$ + 43.2° (c = 1.50, CHCl₃). IR (KBr, v_{max} , cm⁻¹): 3435-3380 (OH), 1360-1380 (germinal dimethyl). EIMS *m/z* (rel. int.): [M]⁺ 416 (35), 398 (48), 383 (100), 338 (30). HREIMS *m/z*: 416. 5210 (calcd. 416.5236 for C₂₈H₄₈O₂). ¹H NMR (CDCl₃, 400 MHz) δ: 3.57 (1H, dd, *J* = 10.4, 4.9 Hz, H-3), 3.22 (1H, dt, *J* = 9.9, 7.6 Hz, H-6), 1.62 (2H), 1.06 (2H), 0.52 (2H, d, *J* = 4.7 Hz, H-19), 0.97 (3H, s, H-28), 0.92 (3H, d, *J* = 7.3 Hz, H-21), 0.87 (3H, s, H-18), 0.83 (6H, d, *J* = 6.8 Hz, H-26 and H-27). ¹³C NMR (CDCl₃, 100 MHz) δ: 70.7 (C-6), 70.2 (C-3), 52.3 (C-17), 47.4 (C-14), 47.3 (C-8), 39.4 (C-24), 26.3 (C-11), 36.0 (C-22), 34.4 (C-12), 32.2 (C-15), 30.7 (C-1), 28.0 (C-25), 27.0 (C-16), 29.2 (C-10), 25.0 (C-19), 24.0 (C-23), 23.1 (C-26, 27), 18.8 (C-21), 18.7 (C-28), 17.8 (C-18).

Oleanolic acid (14): Colorless crystals, 22 mg, m.p. 305-306 °C. $[\alpha]_D^{25}$ + 78.9° (c = 0.07, CHCl₃). IR (KBr, v_{max}, cm⁻¹): 3400-2640, 1700, 1660 and 820. EIMS *m/z* (rel. int.): 456 [M]⁺ (4), 248 (98), 208 (12), 203 (60) and 133 (53). HREIMS *m/z*: 456.3610 (calcd. for C₃₀H₄₈O₃, 456.3603). ¹H NMR (CDCl₃, 400 MHz): δ 5.24 (1H, t, *J* = 3.4 Hz, H-12), 3.60 (1H, dd, *J* = 4.1, 9.9 Hz, H-3), 1.12 (3H, s, Me-27), 1.03 (3H, s, Me-23), 0.98 (3H, s, Me-24), 0.96 (3H, s, Me-25), 0.91(3H, s, Me-29), 0.90 (3H, s, Me-26) and 0.89 (3H, s, Me-30). ¹³C NMR (CDCl₃, 100 MHz): δ 183.4 (C-28), 143.6 (C-13), 122.7 (C-12), 78.0 (C-3), 55.2 (C-5), 47.6 (C-9), 46.5 (C-17), 45.9 (C-19), 41.6 (C-14), 41.0 (C-18), 39.1 (C-8), 38.9 (C-4), 38.4 (C-1), 37.5 (C-10), 33.8 (C-21), 33.0 (C-29), 32.2 (C-7), 32.4 (C-22), 30.6 (C-20), 28.1 (C-23), 27.5 (C-15), 27.2 (C-2), 25.9 (C-27), 24.5 (C-30), 23.4 (C-11), 23.4 (C-16), 19.3 (C-6), 17.1 (C-26), 15.6 (C-24), 15.4 (C-25).

5, 6-Dihydroxy-4,7-dimethoxy-2-methylanthracene-9,10-dione (15): Orange crystals, m.p. 259 ° C. UV (MeOH): λ_{max} 306, 329, 405 nm. IR (KBr, v_{max} , cm⁻¹) 3355, 1659, 1635, 1455. EIMS *m/z* (rel. int. %) [M]⁺ 314 (66), 299 (29), 296 (35), 283 (19), 269 (30), 268 (40), 255 (15). HREIMS *m/z* (rel. int. %) 314.0785 (calcd. for C₁₇H₁₄O₆, 314.0790). ¹H NMR (CDCl₃, 400 MHz) δ : 12.01 (1H, s, OH-5), 7.60 (1H, s, H-1), 7.23 (1H, s, H-8), 7.09 (1H, s, H-3), 6.50 (1H, s, OH-6), 3.95 (3H, s, OCH₃-7), 3.89 (3H, s, OCH₃-8), 2.49 (3H, s, CH₃-2). ¹³C NMR (CDCl₃, 100 MHz) δ : 185.0 (C-10), 181.0 (C-9), 160.5 (C-4), 154.1 (C-5), 150.9 (C-7), 148.9 (C-2), 139.1 (C-6), 123.0 (C-3), 120.9 (C-1), 106.5 (C-8), 63.3 (OCH₃-4), 56.0 (OCH₃-7), 22.0 (CH₃-2).

Cycloart-24-ene-1,3-diol (16): White crystals, 16 mg, m.p. 140.5 °C, $[\alpha]_D^{25}$ + 78.9° (c = 0.07, CHCl₃). IR (KBr, v_{max} , cm⁻¹) 3440-3380 (OH), 1360-1380 (geminaldimethyls). EIMS (rel. int. %) [M]⁺ 442 (26), 424 (66), 406 (52), 391 (45), 346 (35). HREIMS (rel. int. %) [M]⁺ 442 (calcd. 442.2413 for $C_{30}H_{50}O_2$), ¹H NMR (CDCl₃, 400 MHz) δ : 5.10 (1H, t, *J* = 6.2) Hz, H-24), 3.22 (1H, dd, J = 6.9, 4.4 Hz, H-1), 3.31 (1H, dd, J = 9.2, 6.8 Hz, H-3), 1.54 (6H, s, Me-26, Me-27), 1.15 (3H, s, Me-18), 1.14 (3H, s, Me-28), 1.12 (3H, s, Me-30), 1.09 (3H, s, Me-29), 1.03 (3H, s, Me-21), 0.06 (2H, d, J = 4.4 Hz, H-18). ¹³C NMR (CDCl₃, 100 MHz),130.0 (C-25), 124.1 (C-24), 76.2 (C-3), 54.3 (C-13), 53.1 (C-1), 51.0 (C-5), 50.9 (C-8), 46.0 (C-17), 41.4 (C-15), 39.5 (C-14), 37.4 (C-20), 36.9 (C-22), 36.2 (C-4), 34.5 (C-11), 30.2 (C-10), 28.6 (C-19), 27.3 (C-16), 25.9 (C-23), 24.9 (C-9), 22.6 (C-28), 21.8 (C-6), 21.8 (C-26), 20.7 (C-12), 20.6 (C-29),18.0 (C-30), 17.1 (C-27), 16.9 (C-21).

Stigmasterol 3-O-β-D-glucopyranoside (17): Amorphous solid, 30 mg, m.p. 289-290 °C. $[\alpha]_D^{27}$ -51.5° (c = 1.20, CH₃OH). IR (KBr, v_{max} , cm⁻¹) 3454 (OH), 3024, 1646 (C=C). EIMS *m/z*: [M-Glc]⁺ 412 (72), 397 (15), 394 (22), 379 (28), 369 (35), 351 (71), 327 (55), 301(15), 300 (67), 273 (21), 271 (26). HRFABMS (+ve) m/z: 575.4231 (calcd. for C₃₅H₅₉O₆, 575.4233). ¹H NMR (400 MHz, CD₃OD) δ: 5.23 (1H, br d, *J* = 5.4 Hz, H-6), 5.14 (1H, dd, *J* = 15.2, 8.4 Hz, H-22), 5.02 (1H, dd, J = 15.2, 8.6 Hz, H-23), 4.78 (1H, d, J = 7.4 Hz, H-1'), 3.84-4.44 (m, Glc-H), 3.83 (1H, m, H-3), 1.01 (3H, s, CH₃-19), 0.90 (3H, d, *J* = 6.2 Hz, CH₃-21), 0.83 (3H, d, *J* = 6.5 Hz, CH₃-26), 0.82 (3H, t, J = 7.0 Hz, CH₃-29), 0.80 (3H, d, J = 6.5 Hz, CH₃-27), 0.67 (3H, s, CH₃-18). ¹³C NMR (125) MHz, CD₃OD) δ: 141.5 (C-5), 138.9 (C-22), 129.1 (C-23), 121.1 (C-6), 102.8 (C-1'), 79.8 (C-3), 76.9 (C-3'), 76.7 (C-5'), 74.2 (C-2'), 70.6 (C-4'), 62.2 (C-6'), 57.0 (C-14), 56.1 (C-17), 52.1 (C-24), 50.8 (C-9), 43.9 (C-4), 43.1 (C-13), 40.5 (C-20), 39.9 (C-12), 37.8 (C-1), 36.9 (C-10), 32.9 (C-25), 32.8 (C-2), 31.9 (C-7), 31.7 (C-8), 28.9 (C-16), 25.6 (C-28), 24.5 (C-15), 21.9 (C-21), 21.7 (C-27), 21.5 (C-11), 19.5 (C-19), 19.1 (C-26), 12.6 (C-18), 12.1 (C-29).

β-Sitosterol 3-*O***-β-D-glucopyranoside (18):** Amorphous solid, 18 mg, m.p. 279-280 °C, $[α]_D^{28}$ -14.5° (c = 1.32, MeOH). IR (KBr, v_{max} , cm⁻¹) 3452, 3044,1646. EIMS *m/z*: [M-Glc]⁺ 414 (19), 399 (15), 396 (24), 381 (70) 329 (25), 275 (11), 273 (24), 255 (35). HRFABMS (+ve) *m/z*: 577.4386 [M + H]⁺ (calcd. for C₃₅H₆₁O₆, 577.4389). ¹H NMR (300 MHz, CD₃OD)

δ: 5.33 (1H, d, J = 7.2 Hz, H-1'), 5.12 (1H, br d, J = 5.4 Hz, H-6), 3.85 (1H, m, H-3), 3.82-4.42 (m, Glc-H), 1.01 (3H, s, CH₃-19), 0.92 (3H, d, J = 6.2 Hz, CH₃-21), 0.84 (3H, t, J = 7.0 Hz, CH₃-29), 0.83 (3H, d, J = 6.5 Hz, CH₃-26), 0.81 (3H, d, J= 6.5 Hz, CH₃-27), 0.68 (3H, s, CH₃-18). 13C-NMR (100 MHz, CD₃OD) δ: 142.0 (C-5), 122.1 (C-6), 103.2 (C-1'), 80.9 (C-3), 76.8 (C-3'), 76.6 (C-5'), 74.2 (C-2'), 70.2 (C-4'), 62.0 (C-6'), 56.9 (C-14), 56.5 (C-17), 50.5 (C-24), 50.4 (C-9), 43.9 (C-4), 43.0 (C-13), 40.8 (C-12), 39.5 (C-22), 38.7 (C-1), 37.2 (C-20), 37.1 (C-10), 33.0 (C-7), 32.9 (C-8), 29.9 (C-2), 29.7 (C-16), 29.5 (C-23), 26.0 (C-25), 25.8 (C-15), 23.7 (C-28), 21.5 (C-11), 20.1 (C-27), 19.7 (C-21), 19.5 (C-19), 18.2 (C-26), 12.2 (C-18), 11.9 (C-29).

RESULTS AND DISCUSSION

The methanolic extract of Tribulus longipetalus was divided into n-hexane, chloroform, ethyl acetate, n-butanol and water soluble fractions. A series of column chromatographic techniques applied to chloroform and ethyl acetate fractions resulted in the isolation and structural elucidation of eighteen known compounds and were identified as 1-triacontanol⁴ (1), hexacosanoic acid⁵ (2), tetracosanoicacid⁶ (3), benzoic acid⁷ (4), 2-hydroxybenzoic acid⁸ (5), 4-ethoxy benzoic acid⁹ (6), 3,5dimethoxybenzoic acid¹⁰ (7), β -sitosterol⁴ (8), β -amyrin¹¹ (9), stigmasterol¹² (10), 5α,8α-epidioxyergosta-6, 9(11), 22- trien- 3β -ol¹³ (11), ursolic acid^{4,10} (12), cyclostenol¹⁴ (13), olea-nolic acid¹⁵ (15), 5,6-dihydroxy-4, 7-dimethoxy-2-methy-lanthracene-9,10-dione¹⁶ (**15**), 1,3-dihydroxycyclolanosterol¹⁷ (**16**), stigmasterol 3-O- β -D-glucopyranoside¹⁵ (17), β -sitosterol 3-O- β -D-glucopyranoside¹⁸ (18), respectively. All of these compounds have been purified for the first time from Tribulus longipetalus Viv.

REFERENCES

- A. Gafoor, Flora of West Pakistan, Printas Printing Press, Karachi, Pakistan, p. 21 (1974).
- S.R. Baquar, Medicinal And Poisonous Plants of Pakistan, Printas Printing Press, Karachi, Pakistan, p. 451 (1989).
- A. Temraz, D.O. El Gindi, H.A. Kadry, N. De Tommasi and A. Braca, *Phytochemistry*, 67, 1011 (2006).
- E. Ahmed, A. Malik, N. Riaz and A. Sharif, J. Chem. Soc. Pak., 26, 389 (2004).
- 5. S. Watanabe, Z. Naturforsch. C, 30, 825 (1975).
- 6. L. Marosi, Annalen, 584 (1973).
- E. Ahmed, A. Malik, M.M. Ahmad, M.A. Munawar, S.A. Nagar, J. Anwar, M.A. Qazi, A. Sharif, N. Afza and M. Ashraf, *J. Chem. Soc. Pak.*, 30, 936 (2008).
- Aldrich Library of ¹³C-and ¹H-FT-NMR Spectra, 2, 1065B, 1065C, 1251B, 1252A, 1414C, 1511A, 1512A (1992).
- 9. K.N. Scott, J. Am. Chem. Soc., 94, 8564 (1972).
- K. Jabeen, A. Javaid, E. Ahmad and M.M. Athar, *Nat. Prod. Res.*, 25, 264 (2011).
- 11. S. Hussain, E. Ahmed, A. Malik and A. Jabbar, *J. Chem. Soc. Pak.*, **27**, 296 (2005).
- 12. H.L. Holland, P.R.P. Diakow and G.J. Taylor, *Can. J. Chem.*, **56**, 3121 (1978).
- A.A.C. Gunatilaka, Y. Gopichand, F.J. Schmitz and C. Djerassi, *J. Org. Chem.*, 46, 3860 (1981).
- 14. H.W. Kircher and H.L. Bird Jr., Phytochemistry, 21, 1705 (1982).
- E. Ahmed, A. Sharif, S. Hussain, A. Malik and M. Ul Hassan, *J. Chem. Soc. Pak.*, **33**, 676 (2011).
- A.G. Gonzalez, J.B. Barrera, B.B. Davila, E. Valencia and X.A. Dominguez, *Phytochemistry*, **31**, 255 (1992).
- T. Shen, H.Q. Yuan, W.Z. Wan, X.L. Wang, X.N. Wang, M. Ji and H.X. Lou, *J. Nat. Prod.*, **71**, 81 (2008).
- E. Ahmed, A. Sharif, H. Nawaz and M. Ul Hassan, J. Chem. Soc. Pak., 33, 682 (2011).