

Synthesis and X-Ray Structures of Hydrazones Derived from 2-(4-Nitrophenoxy)acetohydrazide

QIAN-SHOU ZONG 1,2,* and JIAN-YI $W\mathrm{U}^1$

¹College of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, P.R. China ²School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, P.R. China

*Corresponding author: E-mail: zongqianshou@163.com

Received: 11 March 2013;	Accepted: 9 August 2013;	Published online: 30 January 2014;	AJC-14610
--------------------------	--------------------------	------------------------------------	-----------

Two new hydrazones, (4-nitrophenoxy)acetic acid [1-(3,4-dihydroxyphenyl)methylidene]hydrazide (1) and (4-nitrophenoxy)acetic acid [1-(4-hydroxyphenyl)methylidene]hydrazide (2), derived from 2-(4-nitrophenoxy)acetohydrazide have been prepared and determined by means of the infrared spectra, ¹H NMR and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space group P2₁/ n with a = 8.306(1) Å, b = 12.220(1) Å, c = 14.853(2) Å, β = 104.899(1)°, V = 1456.8(3) Å³, Z = 4. Compound 2 crystallizes in the monoclinic space group P2₁/n with a = 8.356(3) Å, b = 12.392(3) Å, c = 14.595(3) Å, β = 105.598(2)°, V = 1455.6(7) Å³, Z = 4. Both molecules have similar bond lengths and angles pattern. The crystal structures of both compounds are stabilized by hydrogen bonds, as well as π ··· π interactions.

Keywords: Hydrazone, Schiff base, Synthesis, X-Ray structure, Hydrogen bonding.

INTRODUCTION

Hydrazones derived from hydrazides with various aldehydes have been attracted much attention for their structures¹⁻³, coordination ability⁴⁻⁶, biological activities⁷⁻⁹, as well as promising properties for analytical applications^{10,11}. Hydrazones containing the typical -C(O)-NH-N=CH- functional groups are also regarded as Schiff base compounds. The detailed investigation of the structures of such compounds may supply important information relating to their properties. Although there is a number of crystal structures of hydrazones. To the best of our knowledge the compounds described here are the first examples derived from 2-(4-nitrophenoxy)acetohydrazide. In this paper, we report the synthesis and structures of two new hydrazones derived from 2-(4-nitrophenoxy)acetohydrazide with 3,4-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde (**Scheme-I**).

EXPERIMENTAL

2-(4-Nitrophenoxy)acetohydrazide, 3,4-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde were obtained from Fluka. IR spectra of KBr discs were recorded with a Perkin Elmer 783 spectrometer. NMR spectra were recorded on a Varian XL gemini 300 spectrometer using tetramethylsilane as internal standard.

Preparation of (4-nitrophenoxy)acetic acid [1-(3,4dihydroxyphenyl)methylidene]hydrazide (1): 2-(4-

Nitrophenoxy)acetohydrazide (1 mmol, 0.21 g) and 3,4dihydroxybenzaldehyde (1 mmol, 0.14 g) were mixed and stirred in absolute ethanol (30 mL). The reaction mixture was refluxed for 1 h on a water bath, then cooled to room temperature. Yellow block-like single crystals of the compound were obtained by slow evaporation of the solution in air. Yield, 87 %. Elemental analysis for $C_{15}H_{13}N_3O_6$, calcd. (%): C 54.4, H 4.0, N 12.7; found (%): C 54.2, H 4.0, N 12.6. ¹H NMR (DMSOd₆): δ (ppm) 4.65 (s, 2H), 6.82 (d, 1H), 7.23-7.36 (m, 4H), 8.11 (d, 2H), 8.57 (s, 1H), 11.06 (s, 1H), 12.31 (s, 1H), 12.53 (s, 1H).

Preparation of (4-nitrophenoxy)acetic acid [1-(4-hydroxyphenyl)methylidene]hydrazide (2): The same procedure as described for **1** was used for the preparation of

2, with 3,4-dihydroxybenzaldehyde replaced by 4-hydroxybenzaldehyde (1.0 mmol, 0.12 g). Yield, 79 %. Elemental analysis for $C_{15}H_{13}N_3O_5$, calcd. (%): C 57.1, H 4.2, N 13.3; found (%): C 56.9, H 4.1, N 13.4. ¹H NMR (DMSO-*d*₆): δ (ppm) 4.65 (s, 2H), 6.83 (d, 2H), 7.23 (d, 2H), 7.73 (d, 2H), 8.11 (d, 2H), 8.56 (s, 1H), 11.15 (s, 1H), 12.27 (s, 1H).

X-ray diffraction: Single crystal X-ray diffraction experiments were performed on a BRUKER SMART APEX CCD diffractometer using graphite monochromated MoK_a radiation ($\lambda = 0.71073$ Å) at 298(2) K. Crystals with dimensions 0.18 mm × 0.18 mm × 0.17 mm for **1** and 0.30 mm × 0.27 mm × 0.23 mm for **2** were used. The structures were solved by direct methods with the program SHELXS-97 and refined by full matrix least squares on F² with SHELXL-97.¹² All nonhydrogen atoms were refined anisotropically. The amino hydrogen atoms were located from difference Fourier maps. The remaining hydrogen atoms were placed geometrically, in idealized positions (C-H distances of 0.93 - 0.96 Å, O-H distances of 0.82 Å) and refined as rigid groups with their U_{iso}'s as 1.2 or 1.5 times U_{eq} of the appropriate carrier atoms. The crystallographic data are listed in Table-1.

TABLE-1				
CRYSTAL DATA AND STRUCTURE				
REFINEMENT FOR THE COMPOUNDS				
	1	2		
Empirical formula	$C_{15}H_{13}N_3O_6$	$C_{15}H_{13}N_3O_5$		
Formula weight	331.3	315.3		
Temperature (K)	298(2)	298(2)		
Wavelength (Å)	0.71073	0.71073		
Crystal system	Monoclinic	Monoclinic		
Space group	$P2_1/n$	P2 ₁ /n		
Unit cell dimensions				
a (Å)	8.306(1)	8.356(3)		
b (Å)	12.220(1)	12.392(3)		
c (Å)	14.853(2)	14.595(3)		
β (°)	104.899(1)	105.598(2)		
Volume (Å ³)	1456.8(3)	1455.6(7)		
Z	4	4		
Calculated density	1.510	1.439		
(Mg/m ³)				
Absorption	0.119	0.110		
coefficient (mm ⁻¹)				
F ₍₀₀₀₎	688	656		
Crystal size (mm ³)	$0.18\times0.18\times0.17$	$0.30 \times 0.27 \times 0.23$		
θ range for data	2.8-27.0	2.5-24.5		
collection (°)				
T_{min} and T_{max}	0.9788, 0.9800	0.9676, 0.9750		
Index ranges	$-9 \le h \le 10; -14 \le k$	$-6 \le h \le 10; -15 \le k$		
	$\leq 13; -17 \leq 1 \leq 17$	$\leq 14; -18 \leq 1 \leq 15$		
Reflections collected	10452	6737		
Unique reflections	2697	3108		
Observed reflections	2355	1485		
$[I > 2\sigma(I)]$				
Parameters	222	212		
Restraints	1	1		
R	0.0202	0.0468		
Goodness-of-fit on F^2	1.156	0.996		
Final R indices [I >	$R_1 = 0.0385$	$R_1 = 0.0589$		
2σ(I)]	$wR_2 = 0.1173$	$wR_2 = 0.1128$		
R indices (all data)	$R_1 = 0.0471$.	$R_1 = 0.1366.$		
($wR_2 = 0.1442$	$wR_2 = 0.1438$		
Largest difference	0.433, -0.284	0.148, -0.180		
peak and hole (e Å ⁻³)	,			

RESULTS AND DISCUSSION

The molecular structures showing 30 % displacement ellipsoids with atomic-numbering schemes of the compounds 1 and 2 are shown in Figs. 1 and 2, respectively. Selected bond lengths and angles are listed in Table-2. Structures of the compounds reveal quasi-coplanarity of the whole molecular skeleton with localization of the double bonds in the central -C=N-NH-C(O)- which have E-configuration with respect to the double bonds of the hydrazone bridges. The dihedral angles between the two benzene rings are 6.5(3)° for 1 and 6.2(3)° for 2. In each molecule of the compounds, the C1-C6 benzene ring is nearly coplanar with the plane defined by the C7-N1-N2 moiety, with dihedral angle of 12.8(3)° for 1 and 10.0(3)° for 2. The bonds C7-N1 and C8-O3 in 1 and C7-N1 and C8-O2 in 2 have double bond character. All the bond lengths in the compounds are in agreement with the values found in analogues compounds¹⁻³. Both crystals of the compounds are stabilized by hydrogen bonds (Table-3) and $\pi \cdots \pi$ interactions (Table-4) acting among the aromatic rings (Figs. 3 and 4).

Fig. 1. Anisotropic ellipsoid representation of the compound 1 together with atom labeling scheme. The ellipsoids are drawn at 30 % probability level, hydrogen atoms are shown as spheres of arbitrary radii

Fig. 2. Anisotropic ellipsoid representation of the compound **2** together with atom labeling scheme. The ellipsoids are drawn at 30 % probability level, hydrogen atoms are shown as spheres of arbitrary radii

In the IR spectra of the compounds, the OH stretching vibrations centered at 3376 cm⁻¹ for **1** and 3367 cm⁻¹ for **2**. Absorption due to O-H bending vibrations gave well-defined peaks at about 1260 cm⁻¹. The peaks at 3178 cm⁻¹ for **1** and 3163 cm⁻¹ for **2** could be attributed to N-H symmetric stretching. The aromatic C-H stretching vibrations are located at 3030-3060 cm⁻¹. The aliphatic C-H stretching vibrations are observed at 2850-2990 cm⁻¹. Both compounds exhibit stretching vibration frequencies of imino bonds at about 1610 cm⁻¹. Intensive bands originating from stretching vibrations of C=O groups are located at 1650 cm⁻¹ for **1** and **2**. The C-O stretching vibration frequencies of hydroxy and methoxy groups substituted on benzene rings are in the region 1240-1220 cm⁻¹. The peaks at

TABLE-2 SELECTED DOND LENCTUS (Å) AND DOND ANCLES (Ø) FOR THE COMPOUNDS					
SELECTED BOND LENGTHS (A) AND BOND ANGLES (*) FOR THE COMPOUNDS					
N1-C7	1.267(2)	N1-N2	1.3891(18)	N2-C8	1.332(2)
N3-O6	1.221(3)	N3-O5	1.226(2)	N3-C13	1.455(2)
01-C4	1.357(2)	O2-C3	1.365(2)	O3-C8	1.2306(19)
O4-C10	1.3659(18)	O4-C9	1.419(2)	C1-C7	1.454(2)
C8-C9	1.498(2)	-	-	-	-
C7-N1-N2	114.34(13)	C8-N2-N1	118.91(13)	O6-N3-O5	122.82(17)
O6-N3-C13	118.72(19)	O5-N3-C13	118.45(18)	C10-O4-C9	117.08(13)
C6-C1-C7	118.27(14)	C2-C1-C7	122.93(15)	O2-C3-C2	117.56(15)
O2-C3-C4	122.18(15)	O1-C4-C5	116.65(16)	O1-C4-C3	124.32(15)
N1-C7-C1	122.13(14)	O3-C8-N2	124.31(15)	O3-C8-C9	118.13(15)
N2-C8-C9	117.52(13)	O4-C9-C8	110.57(13)	O4-C10-C11	123.67(15)
O4-C10-C15	115.36(15)	C12-C13-N3	118.64(17)	C14-C13-N3	119.44(17)
		2	2		
N1-C7	1.266(3)	N1-N2	1.385(3)	N2-C8	1.335(3)
N3-O5	1.221(3)	N3-O4	1.232(3)	N3-C13	1.453(3)
01-C1	1.355(3)	O2-C8	1.217(3)	O3-C10	1.365(3)
O3-C9	1.420(3)	C4-C7	1.458(3)	C8-C9	1.497(4)
C7-N1-N2	115.3(2)	C8-N2-N1	119.0(2)	O5-N3-O4	122.5(3)
O5-N3-C13	118.8(3)	O4-N3-C13	118.7(3)	C10-O3-C9	117.9(2)
O1-C1-C6	116.9(3)	O1-C1-C2	123.3(2)	C3-C4-C7	123.2(2)
C5-C4-C7	118.7(2)	N1-C7-C4	121.9(3)	O2-C8-N2	124.8(3)
O2-C8-C9	119.0(3)	N2-C8-C9	116.1(2)	O3-C9-C8	110.6(2)
O3-C10-C15	115.4(2)	O3-C10-C11	123.5(2)	C12-C13-N3	119.0(3)
C14-C13-N3	119.5(3)	-	-	-	-

Fig. 3. Molecular packing diagram of **1** as seen along b direction. Hydrogen bonds are shown as dashed lines

TABLE-3					
HYDROGEN BONDING INFORMATION					
D-H…A	D-H (Å)	H…A (Å)	D…A (Å)	D-H···A (°)	
		1			
O1-H1···O3 ⁱ	0.82	2.07	2.865(2)	165	
O1-H1…O2	0.82	2.49	2.889(2)	111	
O1-H1…N1 ⁱ	0.82	2.63	3.127(2)	121	
O2-H2···O3	0.82	1.89	2.693(2)	165	
N2-H2B····O5 ⁱⁱ	0.90(1)	2.49(2)	3.251(2)	143(2)	
N2-H2B····O2 ⁱⁱⁱ	0.90(1)	2.58(2)	3.237(2)	130(2)	
2					
O1-H1···O2 ^{iv}	0.82	1.95	2.755(3)	168	
O1-H1…N1 ^{iv}	0.82	2.66	3.127(3)	118	
N2-H2····O4 ^v	0.90(1)	2.48(2)	3.265(3)	147(2)	
Symmetry codes: (i) $3/2 - x \cdot 1/2 + y \cdot 3/2 - z$; (ii) $-1/2 - x \cdot 1/2 + y \cdot 1/2 - z$					

Symmetry codes: (i) 3/2 - x, 1/2 + y, 3/2 - z; (ii) -1/2 - x, 1/2 + y, 1/2 - z; (iii) -1/2 + x, 1/2 - y, -1/2 + z; (iv) -1/2 - x, 1/2 + y, 1/2 - z; (v) 3/2 - x, -1/2 + y, 1/2 - z.

Fig. 4. Molecular packing diagram of **2** as seen along b direction. Hydrogen bonds are shown as dashed lines.

TABLE-4				
$\pi \cdots \pi$ INTERACTIONS (Å)				
1				
Cg1…Cg2 ^{iv}	4.320(2)	Cg1…Cg2 ^v	4.024(2)	
Cg1 and Cg2 are the centroids of the C1-C6 (benzene) and C9-C14				
(benzene) rings, respectively.				
2				
Cg3…Cg3 ^{vi}	4.206(2)	_	-	
Cg3 is the centroid of the C1-C6 (benzene) ring.				
Symmetry codes: (iv) $1/2 + x$, $1/2 - y$, $-1/2 + z$; (v) $1/2 + x$, $1/2 - y$, $1/2$				
+ z; (vi) -x, 1 - y, -z.				

775 cm⁻¹ are due to N-H out-of-plane bending. Symmetric and asymmetric stretching vibrations of N-O bonds of the nitro group usually give peaks in the region 1550-1500 and 1360-1290 cm⁻¹. The first one was not clearly seen in the present spectra because of the presence of aromatic stretching absorptions, but the second one displayed as a sharp band at 1345 cm⁻¹.

Supplementary material

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, supplementary publication Nos. CCDC- 879965 (1) and 879966 (2). Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336-033; e-mail deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

ACKNOWLEDGEMENTS

The authors thank the Natural Science Foundation of China (No. 21302063) the Excellent Yong Teachers Program (No. 00511024) and China Postdoctoral Science Foundation (No. 2011M500989) for supporting this work.

REFERENCES

- 1. Y.-J. Wei and F.-W. Wang, J. Struct. Chem., 52, 755 (2011).
- Y. Lei, T.-Z. Li, C. Fu, X.-L. Guan and Y. Tan, J. Chem. Crystallogr., 41, 1707 (2011).
- 3. H.-Y. Zhu, Asian J. Chem., 24, 558 (2012).
- H.H. Monfared, S. Alavi, R. Bikas, M. Vahedpour and P. Mayer, *Polyhedron*, 29, 3355 (2010).
- D. Matoga, J. Szklarzewicz, K. Stadnicka and M.S. Shongwe, *Inorg. Chem.*, 46, 9042 (2007).
- M. Kuriakose, M.R. Prathapachandra Kurup and E. Suresh, *Struct. Chem.*, 18, 579 (2007).
- 7. P.V. Bernhardt, P. Chin and D.R. Richardson, *J. Biol. Inorg. Chem.*, **6**, 801 (2001).
- A. Walcourt, M. Loyevsky, D.B. Lovejoy, V.R. Gordeuk and D.R. Richardson, *Int. J. Biochem. Cell. Biol.*, 36, 401 (2004).
- K.K. Vijaya Raj, B. Narayana, B.V. Ashalatha, N. Suchetha Kumari and B.K. Sarojini, *Eur. J. Med. Chem.*, 42, 425 (2007).
- X.H. Peng, X.L. Tang, W.W. Qin, W. Dou, Y.L. Guo, J.R. Zheng, W.-S. Liu and D.Q. Wang, *Dalton Trans.*, 40, 5271 (2011).
- A.A. Tameem, B. Saad, A. Makahleh, A. Salhin and M.I. Saleh, *Talanta*, 82, 1385 (2010).
- G.M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement, University of Göttingen, Germany (1997).