

Synthesis and Crystal Structure of Trinuclear Ni(II) Complex with 5-Methoxy-4'-bromo-2,2'-[ethylenedioxy*bis*(nitrilomethylidyne)]diphenol

YU-HUA YANG, XIN-YING ZHANG, XIU-YAN DONG^{*}, GANG LI and MENG-MENG ZHAO

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China

*Corresponding author: E-mail: dxy568@163.com

Received: 5 June 2013;	Accepted: 18 July 2013;	Published online: 26 December 2013;	AJC-14521
------------------------	-------------------------	-------------------------------------	-----------

A Ni(II) complex with 5-methoxy-4'-bromo-2,2'-[ethylenedioxy*bis*(nitrilomethylidyne)]diphenol (H₂L) has been synthesized, with the formula {[NiL(*n*-butanol)(μ -OAc)]₂Ni}·*n*-butanol. The crystal of the Ni(II) complex belongs to triclinic, space group P-1 with cell dimensions a = 10.897(1) Å, b = 12.439(1) Å, c = 12.518(1) Å and Z = 1. In the Ni(II) complex, there are three Ni(II) atoms, two deprotonated L²⁻ moieties which provide N₂O₂ donors, two acetate anions, two coordinated and one non-coordinated *n*-butanol molecules, which result in the formation of a slightly distorted octahedral coordination geometry around each Ni(II) atom, respectively.

Keywords :Asymmetric Salamo-type ligand, Ni(II) complex, Synthesis, Crystal structure.

INTRODUCTION

Transition metal complexes of Salen-type ligands have attracted much interest in the last few decades due to their unique catalytic activity^{1,2}, photonic devices^{3,4}, biological activity^{5,6} and magnetic properties⁷⁻⁹, such as epoxidation catalysts, in the presence of a terminal oxidant like iodosylbenzene¹⁰⁻¹⁴, N-salicylideneanilines constitute an important family of photochromic compounds^{3,4}. This photochromism has also been observed for the derivative Salen-type compound¹⁵. Furthermore, Salen-Ni(II) complexes are used extensively in the design and construction of new magnetic materials and models for the Ni(II) centers of enzymes. Hence, structural characteristics of transition metal complexes with Salen-type ligands may be a valuable source of information. Transition metal complexes of Salen-type ligands with oxygen and nitrogen donors are of particular interest^{16,17} because of their ability to possess excellent properties¹⁸⁻²⁰.

Therefore, we here describe the synthesis and crystal structure of a trinuclear Ni(II) complex containing the asymmetric ligand 5-methoxy-4'-bromo-2,2'-[ethylenedioxy*bis*(nitrilomethylidyne)]diphenol (H₂L).

EXPERIMENTAL

2-Hydroxy-4-methoxybenzaldehyde ($\geq 99\%$) and 2-hydroxy-5-bromobenzaldehyde ($\geq 99\%$) were purchased from Alfa Aesar and used without further purification. 1,2-*Bis*(aminooxy)ethane was synthesized according to an analogous method reported earlier²¹⁻²⁵. The other reagents and solvents were analytical grade from Tianjin Chemical Reagent Factory. Elemental analysis for Ni was detected by an IRIS ER/S·WP-1 ICP atomic emission spectrometer. C, H and N analyses were obtained using a GmbH VarioEL V3.00 automatic elemental analysis instrument. X-ray single crystal structure determination was carried out on a Bruker Smart 1000 CCD diffractometer. Melting points were measured by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company and the thermometer was uncorrected.

Synthesis of H₂**L:** The main reaction steps involved in the synthesis of H₂L are given in **Scheme-I**. H₂L was synthesized according to an analogous method reported earlier²⁴. Yield 73.8 %. m.p. 385-387 K. Anal. Calcd. for $C_{17}H_{17}N_2O_5Br$ (%): C, 49.89; H, 4.19; N, 6.85. Found: C, 49.75; H, 4.32; N, 6.99.

Synthesis of Ni(II) complex: A solution of Ni(OAc)₂·4H₂O (3.70 mg, 0.015 mmol) in *n*-butanol (2 mL) was added dropwise to a solution of H₂L (4.10 mg, 0.010 mmol) in acetonitrile (2 mL) at room temperature. The color of the mixing solution turned green immediately and then stirring was continued for 0.5 h at room temperature. The mixture was filtered off and the filtrate was allowed to stand at room temperature for about 1 month, the solvent was partially evaporated and obtained green prismatical single crystals suitable for X-ray crystallographic analysis. Anal. calcd. for C₅₄H₇₆N₄O₁₈Ni₃Br₂ (%): C, 46.16; H, 5.45; N, 3.99; Ni, 12.53. Found: C, 46.37; H, 5.59; N, 3.82; Ni, 12.38.

Scheme-I: Synthetic route to the asymmetrical Salamo-type ligand H₂L

X-ray structure determination: The crystal data and structure refinement for the Ni(II) complex are given in Table-1. The single crystal of the Ni(II) complex with the approximate dimensions of 0.28 mm × 0.20 mm × 0.14 mm was placed on a Bruker Smart 1000 CCD area detector. The reflections were collected using a graphite monochromated MoKa radition ($\lambda = 0.71073$ Å) at 298(2) K. The structure was solved by using the program SHELXL-97 and Fourier difference techniques and refined by the full-matrix least-squares method on F². The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were added theoretically. CCDC: 942408.

TABLE-1					
CRYSTAL DATA	AND STRUCTURE				
REFINEMENT FOR Ni(II) COMPLEX					
Empirical formula	$C_{54}H_{76}Br_2N_4Ni_3O_{18}$				
Formula weight	1405.14				
Temperature (K)	298(2)				
Wavelength (Å)	0.71073				
Crystal system	Triclinic				
Space group	P-1				
Cell dimensions, (Å, deg)	a = 10.8973(11),				
	b = 12.4386(13),				
	c = 12.5175(14),				
	$\alpha = 77.601(1), \beta = 88.596(2),$				
	$\gamma = 67.837(1)$				
Volume (Å ³)	1531.7(3)				
Ζ	1				
Density (calculated) (mg/m ³)	1.523				
Absorption coefficient (mm ⁻¹)	2.288				
F ₍₀₀₀₎	726				
Index ranges	$-12 \le h \le 12, -14 \le k \le 12, -14 \le 1$				
	≤ 14				
Reflections collected	7571/5263 [R(int) = 0.0719]				
Independent reflections	1119				
Data/restraints/parameters	5263/0/408				
Goodness of fit indicator	1.009				
$R[I > 2\sigma(I)]$	$R_1 = 0.0307$, $wR_2 = 0.1167$				
Largest diff. peak and hole (e Å-3)	1.099 and -0.910				

RESULTS AND DISCUSSION

Crystal structure of Ni(II) complex: X-ray crystal structure shows that there are three hexa-coordinated Ni(II) atoms with a linear array, two deprotonated L^2 moieties, two acetate anions, as well as two coordinated and one non-coordinated *n*-butanol molecules in the Ni(II) complex, which result in the formation of the slightly distorted octahedral coordination geometries around each Ni(II) atom, respectively. The molecular structure is shown in Fig. 1. Selected bond lengths and angles are given in Table-2.

Fig. 1. Molecular structure of Ni(II) complex

In the crystal structure, the Ni(II) complex belongs to triclinic, space group P-1 with cell dimensions a = 10.897(1)Å, b = 12.439 (1) Å, c = 12.518(1) Å and Z = 1. The two terminal Ni(II) (Ni2 and Ni2^{#1}) atoms are coordinated by two nitrogen (N1, N2) atoms and two oxygen (O3 and O5) atoms in the N_2O_2 moieties of the L²⁻ moieties, one oxygen (O7) atom from the bridging acetate anion and one oxygen (O8) atom from the coordinated *n*-butanol molecule in the axial positions. The dihedral angel between the two coordination planes, N1-Ni2-O3 and N2-Ni2-O5 is 3.22(3)°. Meanwhile, Ni(II) (Ni1) atom is located on a centre of inversion and has an O2O2 donor set from four $\mu\text{-phenoxo}$ oxygen (O3, O5, O3^{#1} and O5^{#1}) atoms from two L^{2-} units and two μ -acetato oxygen (O6 and O6^{#1}) atoms, which adopt a familiar µ-O-C-O fashion and constitute another octahedral geometry. Furthermore, The interatomic distance of Ni2-Ni1 (3.087(4) Å) is significantly longer than all that of the Ni-O and Ni-N bonds in the Ni(II) complex, which is also essentially similar to previously reported octanuclear analogue of [Zn₈L₄(H₂O)₂X]·2H₂O·1.5CHCl₃· 0.5hexane $(X=H_2O \text{ or EtOH})^{26}$. In addition, the trinuclear structure is probably stabilized by the two µ-acetato moieties, which neutralize the whole charge of the Ni(II) complex.

Intermolecular interactions of the Ni(II) complex: In the crystal structure of the Ni(II) complex, there are weak intramolecular C1-H1A···O7 hydrogen bonds (Fig. 2), as well as strong intermolecular O8-H8···O9, O9-H9···O6 and C25-H25A···O9 hydrogen bonds that stabilize the structure of the Ni(II) complex. Hydrogen bond data are given in Table-3.

TABLE-2 SELECTED BOND LENGTHS (Å) AND ANGLES (°) FOR THE COMPLEX						
Bond	Lengths	Bond	Lengths	Bond	Lengths	
Ni1-O3 ^{#1}	2.080(11)	Ni1-O6 ^{#1}	2.124(13)	Ni2-07	2.047(15)	
Ni1-O3	2.080(11)	Ni1-O6	2.124(13)	Ni2-N1	2.066(18)	
Ni1-O5 ^{#1}	2.094(11)	Ni2-O5	2.017(12)	Ni2-N2	2.098(17)	
Ni1-05	2.094(11)	Ni2-O3	2.031(12)	Ni2-O8	2.126(17)	
Bond	Angles	Bond	Angles	Bond	Angles	
O3 ^{#1} -Ni1-O3	180.0(1)	O5-Ni2-O3	81.1(5)	C3-N1-Ni2	124.8(16)	
O3 ^{#1} -Ni1-O5 ^{#1}	78.2(4)	O5-Ni2-O7	91.1(5)	01'-N1-Ni2	118(3)	
O3-Ni1-O5 ^{#1}	101.8(4)	O3-Ni2-O7	91.4(5)	01-N1-Ni2	127.1(15)	
O3 ^{#1} -Ni1-O5	101.8(4)	O5-Ni2-N1	168.2(6)	C11-N2-Ni2	122.9(14)	
O3-Ni1-O5	78.2(4)	O3-Ni2-N1	87.5(6)	O2-N2-Ni2	128(2)	
O5 ^{#1} -Ni1-O5	180.0(7)	O7-Ni2-N1	92.4(7)	O2'-N2-Ni2	125(5)	
O3 ^{#1} -Ni1-O6 ^{#1}	88.1(5)	O5-Ni2-N2	87.2(6)	C5-O3-Ni2	127.5(12)	
O3-Ni1-O6 ^{#1}	91.9(5)	O3-Ni2-N2	168.3(6)	C5-O3-Ni1	133.0(12)	
O5 ^{#1} -Ni1-O6 ^{#1}	88.5(5)	O7-Ni2-N2	88.7(6)	Ni2-O3-Ni1	97.4(4)	
O5-Ni1-O6 ^{#1}	91.5(5)	N1-Ni2-N2	104.2(7)	C13-O5-Ni2	125.5(11)	
O3 ^{#1} -Ni1-O6	91.9(5)	O5-Ni2-O8	89.7(6)	C13-O5-Ni1	133.1(11)	
O3-Ni1-O6	88.1(5)	O3-Ni2-O8	90.4(6)	Ni2-O5-Ni1	97.3(5)	
O5 ^{#1} -Ni1-O6	91.5(5)	O7-Ni2-O8	178.1(6)	C18-O6-Ni1	129.1(13)	
O5-Ni1-O6	88.5(5)	N1-Ni2-O8	87.2(7)	C18-O7-Ni2	130.2(14)	
O6 ^{#1} -Ni1-O6	180.0(2)	N2-Ni2-O8	89.6(7)	C20-O8-Ni2	118.8(17)	
Symmetry transformations used to generate equivalent atoms: ^{#1} -x+1,-y+1,-z+1						

TABLE-3 DATA FOR HYDROGEN-BONDING INTERACTIONS (Å)						
D-H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	∠D-H…A	Symmetry code	
O8-H8…O9	0.82	1.77	2.59(3)	173	x, y, z	
O9-H9-06	0.82	1.95	2.76(2)	169	1-x, 1-y, 1-z	
C25-H25A…O9	0.97	2.30	2.89(6)	118	1-x, 1-y, -z	
C1-H1A…O7	0.97	2.35	3.19(5)	143	x, y, z	

Each oxygen (O9) atom of the non-coordinated *n*-butanol molecule is hydrogen-bonded to the -O8H8 group of the coordinated *n*-butanol molecule and the -C25H25A group of the another non-coordinated *n*-butanol molecule, respectively, while its -O9H9 group is hydrogen-bonded to the μ -acetato oxygen (O6) atoms. Thus, each Ni(II) complex links two non-coordinated *n*-butanol molecules by intermolecular O8-H8…O9, O9-H9…O6 and C25-H25A…O9 hydrogen bonds into an infinite 1D chain along the *c*-axis (Fig. 3).

Fig. 2. View of the intramolecular hydrogen-bonding interactions of the complex

Fig. 3. View of the 1D chain motif of the Ni(II) complex units along the c axis (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity)

REFERENCES

- S.S. Sun, C.L. Stern, S.T. Nguyen and J.T. Hupp, J. Am. Chem. Soc., 126, 6314 (2004).
- 2. T. Katsuki, Coord. Chem. Rev., 140, 189 (1995).
- E. Hadjoudis, M. Vittorakis and I. Moustakali-Mavidis, *Tetrahedron*, 43, 1345 (1987).
- 4. E. Hadjoudis, Mol. Eng., 5, 301 (1995).
- 5. P.G. Lacroix, Eur. J. Inorg. Chem., 339 (2001).
- 6. E. Keskioglu, A.B. Gündüzalp, S. Cete, F. Hamurcu and B. Erk, *Spectrochim. Acta A*, **70**, 634 (2008).
- T.K. Ronson, H. Adams and M.D. Ward, *Inorg. Chim. Acta*, 358, 1943 (2005).
- Y.H. Feng, C. Wang, J.X. Xu, L. Xu, D.Z. Liao, S.P. Yan and Z.H. Jiang, *Inorg. Chem. Commun.*, **11**, 549 (2008).
- Y.H. Feng, C. Wang, G.F. Xu, Y. Ouyang, D.Z. Liao and S.P. Yan, *Inorg. Chem. Commun.*, **11**, 341 (2008).
- J.F. Larrow, E.N. Jacobsen, Y. Gao, Y. Hong, X. Nie and C.M. Zepp, J. Org. Chem., 59, 1993 (1994).
- 11. W. Zhang and E.N. Jacobsen, J. Org. Chem., 56, 2296 (1991).
- 12. K. Srinivasn, P. Michaud and J.K. Kochi, J. Am. Chem. Soc., 108, 2309 (1986).
- 13. E.N. Jacobsen, W. Zhang and M.L. Guler, J. Am. Chem. Soc., 113, 6703 (1991).
- 14. D.R. Oki and D.J. Hodgsen, Inorg. Chim. Acta, 170, 65 (1990).
- 15. J. Zjao, B. Zhao, J. Liu, A. Ren and J. Feng, Chem. Lett., 385 (2000).
- Z.L. You, H.L. Zhu and W.S. Liu, Z. Anorg. Allg. Chem., 630, 1617 (2004).

- 17. Z.L. You and H.L. Zhu, Z. Anorg. Allg. Chem., 630, 2754 (2004).
- 18. K. Ogawa and T. Fujiwara, Chem. Lett., 28, 657 (1999).
- E. Ito, H. Oji, T. Araki, K. Oichi, H. Ishii, Y. Ouchi, T. Ohta, N. Kosugi, Y. Maruyama, T. Naito, T. Inabe and K. Seki, *J. Am. Chem. Soc.*, **119**, 6336 (1997).
- E. Hadjoudis, T. Dziembowska and Z. Rozwadowski, J. Photochem. Photobiol. A: Chem., 128, 97 (1999).
- M. Maneiro, M.R. Bermejo, M. Fondo, A.M. González, J. Sanmartin, J.C. Garcia-Monteagudo, R.G. Pritchard and A.M. Tyryshkin, *Polyhedron*, 20, 711 (2001).
- H.B. Zhu, Z.Y. Dai, W. Huang, K. Cui, S.H. Gou and C.J. Zhu, *Polyhedron*, 23, 1131 (2004).
- S. Akine, T. Matsumoto, S. Sairenji and T. Nabeshima, *Supramol. Chem.*, 23, 106 (2011).
- (a) W.K. Dong, X.N. He, H.B. Yan, Z.W. Lv, X. Chen, C.Y. Zhao and X.L. Tang, *Polyhedron*, 28, 1419 (2009); (b) W.K. Dong, S.J. Xing, Y.X. Sun, L. Zhao, L.Q. Chai and X.H. Gao, *J. Coord. Chem.*, 65, 1212 (2012); (c) W.K. Dong, Y.X. Sun, Y.P. Zhang, L. Li, X.N. He and X.L. Tang, *Inorg. Chim. Acta*, 362, 117 (2009); (d) W.K. Dong, Y.X. Sun, C.Y. Zhao, X.Y. Dong and L. Xu, *Polyhedron*, 29, 2087 (2010); (e) W.K. Dong, L. Li, C.F. Li, L. Xu and J.G. Duan, *Spectrochimica Acta Part A*, 71, 650 (2008); (f) W.K. Dong, Y.X. Sun, G.H. Liu, L. Li, X.Y. Dong and X.H. Gao, *Z. Anorg. Allg. Chem.*, 638, 1370 (2012); (g) W.K. Dong, J.G. Duan, Y.H. Guan, J.Y. Shi and C.Y. Zhao, *Inorg. Chim. Acta*, 362, 1129 (2009).
- A.D. Khalaji, M. Amirnasr and S. Triki, *Inorg. Chim. Acta*, 362, 587 (2009).
- 26. S. Akine, W.K. Dong and T. Nabeshima, Inorg. Chem., 45, 4677 (2006).