

Magnesium Sulfate Promoted Efficient and Green Synthesis of Aminoalkyl, Amidoalkyl and Diarylmethane Derivatives

S. SELVA GANESAN* and G. ASAITHAMPI

Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613 401 India

*Corresponding author: E-mail: selva@biotech.sastra.edu

Received: 18 March 2014;

Accepted: 31 May 2014;

Published online: 1 December 2014;

AJC-16365

Under solvent-free condition, magnesium sulfate promoted the synthesis of substituted aminoalkyl naphthols, amidoalkyl naphthols and diarylmethane derivatives in excellent yield. Robust dehydrating nature and mild Lewis acidity of magnesium sulfate was exploited to carry out all the transformations.

Keywords: Green synthesis, Magnesium sulfate, One-pot synthesis, Solvent-free synthesis, Substituted naphthol.

INTRODUCTION

Substituted naphthol derivatives are interesting class of compounds exhibit wide spectrum of biological activity such as anticancer¹, antiviral², antitubercular³, antihypertensive⁴, anti-HIV⁵, etc. (Fig. 1). Assorted varieties of catalysts/reagents are reported in literature for substituted amidoalkyl and aminoalkyl naphthol synthesis⁶⁻⁹. However, several methods have limitations such as tedious preparation procedure of catalysts, corrosive and/or toxic nature of reagents, use of organic solvents, difficult product isolation processes, etc.

in literature. Multicomponent reactions offer a convenient way to synthesize highly functionalized molecules. Recently, several modern variants of multicomponent reaction have been reported in literature^{14a-b}. Solvent-free multicomponent reactions are known for their rapid conversion, energy efficient and environmentally benign nature^{14c}. In continuation of our efforts to devise efficient multicomponent reaction^{15a-b}, herein we report MgSO₄ mediated solvent-free substituted naphthol synthesis.

EXPERIMENTAL

Anhydrous MgSO₄ was purchased from HIMEDIA. Except benzaldehyde, all other reagents were used as such without further purification. Freshly distilled benzaldehyde was used for the reaction.

General procedure for the magnesium sulfate promoted substituted naphthol synthesis

Representative procedure for the synthesis of aminoalkyl naphthol: To a stirred mixture of β -naphthol (1 mmol, 144 mg), anhydrous MgSO₄ (0.5 mmol, 60 mg) and 1.5 mmol of amine in a 5 mL round bottom flask, 1.5 mmol of aldehyde was added and the mixture was further stirred in an oil bath at RT or 60 °C for required time. After completion of reaction, the reaction mixture was quenched with 5 mL of water, stirred and the aqueous layer was decanted and for **7** and **8**, after quenching with 5 mL water, the reaction mixture was extracted with ethyl acetate (2 \times 5 mL). The organic layer was washed with water, brine and dried over anhydrous sodium sulfate.

1-(Morpholinomethyl)naphthalen-2-ol (6): Yield = 240 mg (98 %); White solid; m.p. 114-115 °C (Lit.¹⁶ 113-115 °C);

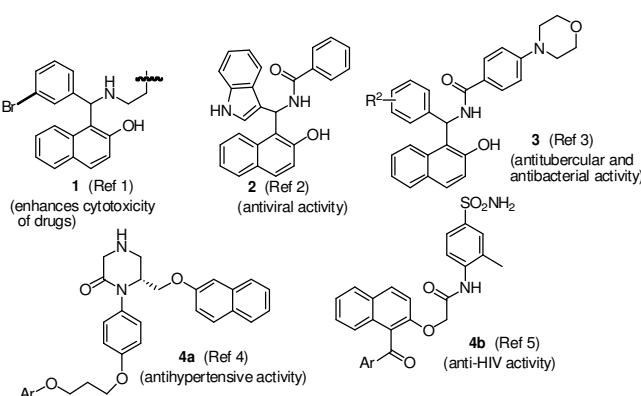


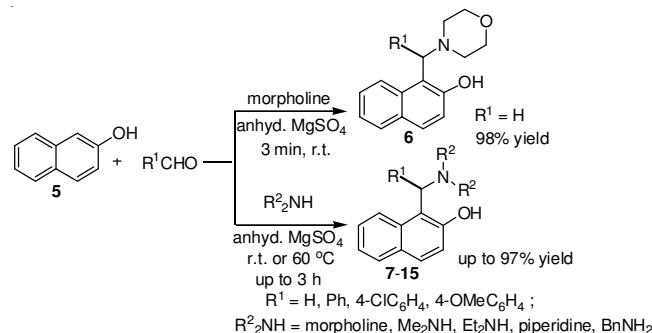
Fig. 1. Bioactive aminoalkyl and amidoalkyl naphthols

Anhydrous MgSO₄ is commercially available, safe, non-toxic dehydrating agent with mild Lewis acidity. MgSO₄ mediated dihydropyrimidin-2(1H)-ones¹⁰, phenazine and quinoxaline¹¹, β -nitroalkanols¹², urea/acetamide derived substituted naphthol synthesis¹³ have been previously reported

FT-IR (KBr, ν_{max} , cm⁻¹): 3046, 2975, 2898, 1621, 1478, 1265, 815 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, δ ppm): 2.65 (br s, 4 H), 3.78 (s, 4 H), 4.15 (s, 2 H), 7.09 (d, J = 8.7 Hz, 1H), 7.25-7.32 (m, 1H), 7.42-7.47 (m, 1H), 7.68-7.83 (m, 3H).

General procedure for the synthesis of amidoalkyl naphthol: To a stirred mixture of β -naphthol (1 mmol, 144 mg), anhydrous MgSO₄ (2 mmol, 241 mg) and benzamide (1.5 mmol, 181 mg) in a 5 mL round bottom flask, 1.2 mmol of aldehyde was added and the mixture was further stirred and heated in an oil bath at 90 °C for 5 h. After completion of the reaction, the reaction mixture was quenched with 5 mL of water, stirred and the aqueous layer was decanted. The gummy residue was stirred with ethanol:water mixture (1:3 v/v, 20 mL), filtered, washed with 5 mL of cold ethanol and dried.

N-[(2-Hydroxynaphthalen-1-yl)(4-nitrophenyl)methyl]benzamide (16): Yield = 342 mg (86 %); Yellowish white crystals; m.p. 236-238 °C (Lit.¹⁷ 233-235 °C); FT-IR (KBr, ν_{max} , cm⁻¹): 3408, 3260, 1643, 1517, 1347, 1057, 865, 810, 706; ¹H NMR (300 MHz, DMSO-*d*₆, δ ppm): 7.24 (d, J = 9.0 Hz, 1 H), 7.32 (t, J = 7.2 Hz, 1 H), 7.39 (d, J = 7.8 Hz, 1 H), 7.45-7.58 (m, 6 H), 7.82-7.91 (m, 4 H), 8.06 (d, J = 8.4 Hz, 1 H), 8.16 (d, J = 8.4 Hz, 2 H), 9.08 (d, J = 7.8 Hz, 1 H), 10.41 (br s, 1 H).


General procedure for the synthesis of diarylmethanes: To a stirred mixture of β -naphthol (1 mmol, 144 mg), anhydrous MgSO₄ (1 mmol, 120 mg) in a 5 mL round bottom flask, 2 mmol of formaldehyde (37 % soln.) and 1.2 mmol of *N,N*-dialkylaniline were subsequently added and the mixture was further stirred at room temperature for 15 min. After completion, the reaction mixture was quenched with 5 mL of water, stirred and the aqueous layer was decanted. To the gummy solid, hexane (2 × 5 mL) was added and the product was filtered and dried.

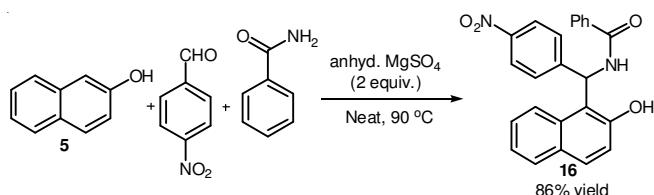
1-{[4-(Dimethylamino)phenyl]methyl}naphthalen-2-ol (17): Yield = 247 mg (89 %); Brown solid; m.p. 129-131 °C (Lit.¹⁸ 127-130 °C); ¹H NMR (300 MHz, CDCl₃, δ ppm): 2.87 (s, 6 H), 4.34 (s, 2 H), 5.10 (br s, 1 H), 6.64 (d, J = 9.0 Hz, 2H), 7.06-7.25 (m, 3H), 7.29-7.35 (m, 1H), 7.41-7.47 (m, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H).

RESULTS AND DISCUSSION

Initially, anhydrous MgSO₄ mediated representative 1-(morpholin-4-ylmethyl)naphthalen-2-ol **6** synthesis was

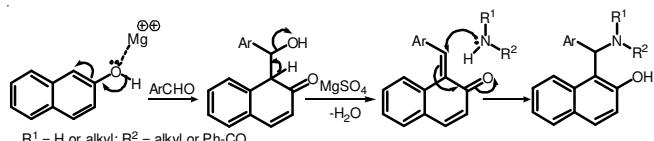
carried out under solvent-free condition. To our delight, with 0.5 equivalents of anhydrous MgSO₄ itself the transformation was completed within 3 min in 98 % yield (**Scheme-I**).

Scheme-I: Anhydrous MgSO₄ mediated aminoalkyl naphthol synthesis

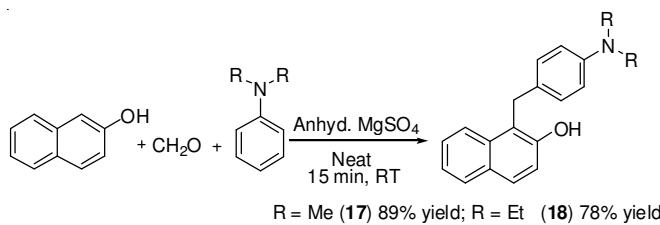

With 0.2 equivalents of anhydrous MgSO₄, the reaction took 15 min to complete with a marginal decrease in the product yield to 95 %. Increasing the quantity of anhydrous MgSO₄ to one equivalent reduced the reaction time to one minute with 98 % yield. Half equivalent of anhydrous MgSO₄ was chosen to carry out further transformations (**Scheme-I**, Table-1).

The aminoalkyl naphthols **6-8** synthesis in excellent yield at room temperature could be attributed to the high reactivity of formaldehyde (**Scheme-I**, Table-1, Entries **1, 2**). With two equivalents of anhydrous MgSO₄, both **7** and **8** were obtained within 1 h. This reaction was found to be general for aldehydes with electron withdrawing (Table-1, Entries **3, 8**) and electron donating substituents (Table-1, Entry **9**). Aromatic aldehydes with electron withdrawing substituent gave better yield than aldehydes with electron donating substituent (Table-1, Entry **8 vs 9**). Anhydrous MgSO₄ mediated aminoalkyl naphthol synthesis was screened with various aliphatic cyclic and acyclic amines (Table-1, Entries **1-9**). Secondary amines gave relatively better yield than that of primary amine (Table-1, Entry **1-4 vs 5**). Both cyclic and acyclic amines gave the corresponding aminonaphthols in excellent yield (Table-1, Entry **2, 6**). It is of interest to extend this methodology to the amidoalkyl naphthol and diarylmethane synthesis. After screening several conditions, it was found that reaction carried out at 90 °C gave the expected product in good yield (**Scheme-II**). Interestingly, reactions carried out in solvents such as ethanol, toluene and glycerol at 90 °C did not give expected product.

TABLE-I
ANHYDROUS MgSO₄ MEDIATED AMINOALKYL NAPHTHOL SYNTHESIS^a


Entry	R ¹	R ² NH	Product	Temp (°C)	Time (h)	Yield ^b (%)	m.p. (°C)	Reported m.p. (°C)
1 ^c	H	Et ₂ NH	7	r.t.	3	96	-	-
2 ^c	H	Me ₂ NH	8	r.t.	3	97	57-59	74-75 ¹⁹
3	4-ClC ₆ H ₄	Me ₂ NH	9	60	3	75	128-130	128-130 ⁹
4	C ₆ H ₅	Me ₂ NH	10	60	3	85	162-164	161-162 ²⁰
5	C ₆ H ₅	BnNH ₂	11	r.t.	3	66 (51) ^d	141-142	143 ²¹
6	C ₆ H ₅	Morpholine	12	60	1.5	91	174-176	175-177 ^{15b}
7	C ₆ H ₅	Piperidine	13	60	1.5	85	197-199	195-196 ²⁰
8	4-ClC ₆ H ₄	Morpholine	14	60	3	87	127-129	130-132 ²²
9	4-MeOC ₆ H ₄	Morpholine	15	60	3	69	124-125	126 ²³

^aTo a finely ground mixture of anhydrous MgSO₄ (0.5 mmol) and β -naphthol (1 mmol), aldehyde (1.5 mmol) and amine (1.5 mmol) were added and stirred. In entries **3** and **8**, aldehyde was ground along with anhydrous MgSO₄ and β -naphthol. ^bYields are for the isolated products. ^cWith 2 mmol of anhydrous MgSO₄ the reaction completes within 1 h. ^dReaction was carried out at 60 °C for 3 h


Scheme-II: Anhydrous MgSO_4 mediated amidoalkyl naphthol synthesis

The formation of both amino/amidoalkyl naphthols can be explained based on the following mechanism (**Scheme-III**).

Scheme-III: Mechanism for the formation of substituted naphthols

We have also screened Friedel-Crafts reaction of β -naphthol with formaldehyde and *N,N*-dialkyylaniline with one mmol of anhydrous MgSO_4 . To our delight, the reaction completed within 15 min at room temperature itself and the product **17** was obtained in 89 % yield (**Scheme-IV**).

Scheme-IV: Anhydrous MgSO_4 mediated diarylmethane synthesis

Moreover, the product can be isolated from the reaction medium by simple aqueous work-up. Previously available methods for diarylmethane synthesis use longer reaction time¹⁸. Anhydrous MgSO_4 was identified as suitable reagent to carry out diarylmethane synthesis under mild condition. Investigations on synthetic utility of the magnesium sulfate in Mannich-type reactions are underway in our laboratory.

Conclusion

In summary, the mild, environmentally benign, non-toxic, readily available nature of anhydrous MgSO_4 makes it a viable reagent for substituted naphthol synthesis. All the reactions were carried out under neat condition followed by simple isolation of the product from the reaction medium. In all transformations, products were obtained in good to excellent yield.

ACKNOWLEDGEMENTS

One of the authors, S. Selva Ganesan thanks DST for DST-Fast Track grant (No: SR/FT/CS-09/2011). Thanks are also due to SASTRA University for providing lab space and NMR facility.

REFERENCES

1. N. Gyémánt, H. Engi, Z. Schelz, I. Szatmári, D. Tóth, F. Fülop, J. Molnár and P.A.M. de Witte, *Br. J. Cancer*, **103**, 178 (2010).
2. W.S.I. Abou-Elmagd and A.I. Hashem, *Med. Chem. Res.*, **22**, 2005 (2013).
3. A.P.G. Nikalje, M. Patel, Y. Ranade, R. Deshpande and D. Rajani, *Der Pharm. Sin.*, **3**, 462 (2012).
4. D.D. Holsworth, N.A. Powell, D.M. Downing, C. Cai, W.L. Cody, J.M. Ryan, R. Ostroski, M. Jalaie, J.W. Bryant and J.J. Edmunds, *Bioorg. Med. Chem.*, **13**, 2657 (2005).
5. X.-D. Ma, X. Zhang, H.-F. Dai, S.-Q. Yang, L.-M. Yang, S.-X. Gu, Y.-T. Zheng, Q.-Q. He and F.E. Chen, *Bioorg. Med. Chem.*, **19**, 4601 (2011).
6. M. Wang and Y. Liang, *Monatsh. Chem.*, **142**, 153 (2011).
7. S.R. Mistry, R.S. Joshi and K.C. Maheria, *J. Chem. Sci.*, **123**, 427 (2011).
8. B. Karmakar and J. Banerji, *Tetrahedron Lett.*, **52**, 4957 (2011).
9. A. Kumar, M.K. Gupta and M. Kumar, *Tetrahedron Lett.*, **51**, 1582 (2010).
10. D.M. Pore, U.V. Desai, T.S. Thopate and P.P. Wadgaonkar, *Aust. J. Chem.*, **60**, 435 (2007).
11. B. Karami and S. Khodabakhshi, *J. Serb. Chem. Soc.*, **76**, 1191 (2011).
12. P.B. Kisanga and J.G. Verkade, *J. Org. Chem.*, **64**, 4298 (1999).
13. K.C. Ashalu and J.N. Rao, *J. Chem. Pharm. Res.*, **5**, 44 (2013).
14. (a) N. Isambert, M.M.S. Duque, J.-C. Plaquevent, Y. Génisson, J. Rodriguez and T. Constantieux, *Chem. Soc. Rev.*, **40**, 1347 (2011); (b) C. de Graaff, E. Ruijter and R.V.A. Orru, *Chem. Soc. Rev.*, **41**, 3969 (2012); (c) M.S. Singh and S. Chowdhury, *RSC Adv.*, **2**, 4547 (2012).
15. (a) S.S. Ganesan and A. Ganesan, *Tetrahedron Lett.*, **55**, 694 (2014); (b) S.S. Ganesan, N. Rajendran, S. Sundarakumar, A. Ganesan and B. Pemiah, *Synthesis*, 1564 (2013).
16. K.-W. Chi, Y.S. Ahn, K.T. Shim, T.H. Park and J.S. Ahn, *Bull. Korean Chem. Soc.*, **20**, 973 (1999).
17. A. Khazaei, M.A. Zolfigol, A.R. Moosavi-Zare, F. Abi, A. Zare, H. Kaveh, V. Khakyzadeh, M. Kazem-Rostami, A. Parhami and H. Torabi-Monfared, *Tetrahedron*, **69**, 212 (2013).
18. A. Kumar, M. Kumar and M.K. Gupta, *Tetrahedron Lett.*, **50**, 7024 (2009).
19. A. Bladé-Font and T.M. Rocabayera, *J. Chem. Soc. Perkin Trans. I*, 841 (1982).
20. M. Periasamy, S. Anwar and M.N. Reddy, *Indian J. Chem.*, **48B**, 1261 (2009).
21. F.E. Ray and W.R. Haefele, *J. Am. Chem. Soc.*, **60**, 36 (1938).
22. C. Mukhopadhyay, S. Rana and R.J. Butcher, *Synth. Commun.*, **42**, 3077 (2012).
23. S. Seshadri, A.L. Cherian and P.Y. Pandit, *Indian J. Chem.*, **7**, 1080 (1969).