

Synthesis, Characterization and Crystal Structures of *N*,*N'-bis*(5-Fluoro-2-hydroxybenzylidene)ethylenediamine and 4,4'-Difluoro-2,2'-[(hydrazine-1,2-diylidene)*bis*(methanylylidene)]diphenol

WEI-MING ZHANG^{1,*}, SHAO-SONG QIAN² and ZHONGLU YOU³

¹Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing 210042, P.R. China ²School of Life Sciences, Shandong University of Technology, Zibo 255049, P.R. China ³Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China

*Corresponding author: E-mail: youzhonglu@126.com

Received: 13 May 2014;	Accepted: 5 September 2014;	Published online: 6 November 2014;	AJC-16247

Two new *bis*-Schiff base compounds, *N*,*N*'-*bis*(5-fluoro-2-hydroxybenzylidene)-ethylenediamine (1) and 4,4'-difluoro-2,2'-[(hydrazine-1,2-diylidene)*bis*(methanyl-ylidene)]diphenol (2), were prepared and structurally characterized by elemental analysis, IR, ¹H NMR and UV-visible spectra and single crystal X-ray determination. Compound 1 crystallizes as monoclinic space group P2₁/n, with unit cell dimensions a = 7.227(2) Å, b = 10.970(3) Å, c = 9.973(2) Å, β = 104.913(2)°, V = 695.1(3) Å³, Z = 2, R₁ = 0.0893 and wR₂ = 0.2724. Compound 2 crystallizes as monoclinic space group P2₁/n, with unit cell dimensions a = 8.205(1) Å, b = 6.643(1) Å, c = 11.816(2) Å, β = 105.848(3)°, V = 619.6(1) Å³, Z = 2, R₁ = 0.0424 and wR₂ = 0.0879. Crystal of the compounds are stabilized by hydrogen bonds and $\pi \cdots \pi$ interactions.

Keywords: Schiff base, Crystal structure, Hydrogen bonding, $\pi \cdots \pi$ interaction.

INTRODUCTION

Schiff bases are a kind of important compounds bearing the typical -N=CH- groups, which can easily be prepared by the condensation reactions of carbonyl-containing compounds with primary amines. The compounds have attracted considerable attention for their wide range of biological activities, such as antibacterial^{1,2}, antitumor^{3,4} and cytotoxic^{5,6}. In addition, *bis*-Schiff bases have been widely used as polydentate ligands in coordination chemistry⁷⁻¹¹. Salicylaldehyde is a common material for the preparation of Schiff bases. However, Schiff bases derived from 5-fluorosalicylaldehyde have seldom been reported. In the present paper, two new *bis*-Schiff bases, *N*,*N'bis*(5-fluoro-2-hydroxybenzylidene)ethyle-nediamine (1) and 4,4'-difluoro-2,2'-[(hydrazine-1,2-diylidene)*bis*(methanylylidene)]diphenol (**2**), are presented.

EXPERIMENTAL

Starting materials, reagents and solvents with AR grade were purchased from commercial suppliers and used without further purification. Elemental analyses were performed on a Perkin-Elmer 240C elemental analyzer. IR spectra were recorded on a Jasco FT/IR-4000 spectrometer as KBr pellets in the 4000-400 cm⁻¹ region. UV-visible spectra were recorded on a Lambda 900 spectrometer with methanol as solvent. ¹H NMR spectra were recorded on a Bruker 300 MHz spectrometer. Synthesis of *N*,*N'-bis*(5-fluoro-2-hydroxybenzylidene) ethylenediamine (1): 5-Fluorosalicylaldehyde (2 mmol, 0.28 g) and ethane-1,2-diamine (1 mmol, 0.06 g) were mixed in methanol and stirred at room temperature for 1 h. The solvent was evaporated to obtain yellow crystalline product of compound **1**, which was washed with methanol and dried in air. Yield: 91 %. Single crystals of compound **1** suitable for X-ray diffraction were obtained by recrystallization of the product in methanol. Anal. Calcd. for C₁₆H₁₄N₂O₂F₂: C, 63.2; H, 4.6; N, 9.2; found: C, 63.0; H, 4.7; N, 9.3 %. IR data (KBr, v_{max}, cm⁻¹): 1632s, 1577m, 1499s, 1401m, 1364m, 1322w, 1273s, 1226s, 1138m, 1041s, 962w, 828s, 773s, 670w, 578w, 517w, 469w. UV-visible (nm, cm mol⁻¹ L⁻¹): 241, 7200; 259, 4050; 360, 2310. ¹H NMR (DMSO-*d*₆, 300 MHz): 8.59 (s, 2H), 7.35 (q, 2H), 7.20 (m, 2H), 6.89 (q, 2H), 3.94 (t, 4H).

Synthesis of 4,4'-difluoro-2,2'-[(hydrazine-1,2diylidene)*bis*(methanylylidene)]-diphenol (2): 5-Fluorosalicylaldehyde (2 mmol, 0.28 g) and hydrazine hydrate (1 mmol, 0.05 g) were mixed in methanol and stirred at room temperature for 1 h. The solvent was evaporated to obtain yellow crystalline product of compound **2**, which was washed with methanol and dried in air. Yield: 73 %. Single crystals of compound **2** suitable for X-ray diffraction were obtained by recrystallization of the product in methanol. Anal. Calcd. for $C_{14}H_{10}N_2O_2F_2$: C, 60.9; H, 3.6; N, 10.1; found: C, 60.7; H, 3.6; N, 10.3 %. IR data (KBr, v_{max} , cm⁻¹): 1628s, 1575m, 1545w, 1491s, 1450w, 1395m, 1338m, 1320w, 1277s, 1267m, 1226m, 1203m, 1172w, 1131w, 1037w, 982w, 878m, 767s, 717m, 678w, 635w, 523w, 477w. UV-visible (nm, cm mol⁻¹ L⁻¹): 290, 5100; 366, 4030. ¹H NMR (DMSO-*d*₆, 300 MHz): 8.45 (s, 2H), 7.57 (s, 2H), 7.23 (m, 2H), 6.96 (q, 2H).

Data collection, structural determination and refinement: Diffraction intensities for the compounds were collected at 298(2) K using a Bruker D8 VENTURE PHOTON diffractometer with MoK_{α} radiation ($\lambda = 0.71073$ Å). The collected data were reduced using the SAINT program¹² and multi-scan absorption corrections were performed using the SADABS program¹³. The structures were solved by direct methods and refined against F² by full-matrix least-squares methods using the SHELXTL¹⁴. All of the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in idealized positions and constrained to ride on their parent atoms. The crystallographic data for the compounds are summarized in Table-1. Selected bond values are listed in Table-2. Hydrogen bonding information is given in Tables 3 and 4.

RESULTS AND DISCUSSION

Compounds 1 and 2 were readily synthesized by reaction of 1:1 molar ratio of 5-fluorosalicylaldehyde with ethane-1,2diamine and hydrazine hydrate, respectively, in methanol at room temperature. Single crystals of the compounds suitable for X-ray diffraction were obtained by slow evaporation of the solutions containing the compounds in air. The compounds have been characterized by elemental analyses, IR and UV-visible

TABLE-1 CRYSTALLOGRAPHIC AND EXPERIMENTAL DATA FOR THE COMPOUNDS				
Compound 1 2				
m.f.	$C_{16}H_{14}N_2O_2F_2$	$C_{14}H_{10}N_2O_2F_2$		
m.w.	304.3	276.2		
Temperature (K)	298(2)	298(2)		
Crystal shape/color	Block/yellow	Block/yellow		
Crystal size (mm ³)	$0.17 \times 0.13 \times 0.13$	$0.32 \times 0.30 \times 0.27$		
Crystal system	Monoclinic	Monoclinic		
Space group	$P2_1/n$	$P2_1/n$		
a (Å)	7.227(2)	8.205(1)		
b (Å)	10.970(3)	6.643(1)		
c (Å)	9.073(2)	11.816(2)		
β (°)	104.913(2)	105.848(3)		
$V(Å^3)$	695.1(3)	619.6(1)		
Z	2	2		
$D_c (g \text{ cm}^{-3})$	1.454	1.481		
$\mu(MoK_{\alpha}) (mm^{-1})$	0.115	0.121		
F(000)	316	284		
Reflections collected	6347	5729		
Unique reflections	1252	1134		
Observed reflections $(I \ge 2\sigma(I))$	881	721		
Parameters	101	92		
Restraints	0	0		
Min. and max. transmission	0.9807, 0.9852	0.9623, 0.9681		
Goodness-of-fit on F ²	1.228	1.058		
$R_1, wR_2 [I \ge 2\sigma(I)]^a$	0.0893, 0.2724	0.0424, 0.0879		
\mathbf{R}_1 , w \mathbf{R}_2 (all data) ^a	0.1181, 0.2919	0.0836, 0.1022		
Large diff. peak and hole (eÅ ⁻³) 0.292, -0.268 0.133, -0.164				
${}^{a}\mathbf{R} = \mathbf{E} = \mathbf{E}/\mathbf{E} + \mathbf{w}\mathbf{R} = [\sum w(\mathbf{E}^{2} - \mathbf{E}c^{2})/\sum w(\mathbf{E}^{2})^{2}]^{1/2}$				

A sign	Ch	om
1151011 5	· 01	CIII

AND BOND ANGLES (°) FOR THE COMPOUNDS				
Compound 1				
N1-C7	1.267(6)		1 467(6)	
C7-N1-C8	119.6(5)	NI-Co	1.407(0)	
Compound 2				
N1-C7	1.277(2)		1 401(2)	
C7-N1-N1A	113.5(2)	INI-INIA	1.401(5)	
Symmetry code for A: $1 - x - y - z = z$				

TABLE-2

TABLE-3					
HYDROGEN BOND DISTANCES (Å)					
AND BOND ANGLES (°) FOR THE COMPOUNDS					
$D-H\cdots A$ $d(D-)$ $d(H\cdots A)$ $d(D\cdots A)$ Angle $(D\cdots A)$					
Compound 1					
01-1…N1	0.82	1.86	2.587(5)	148	
Compound 2					
01-1…N1	0.82	1.89	2.616(2)	146	
C7-7-01 ⁱⁱ	0.93	2.48	3.390(3)	166	
Symmetry code for ii: $1/2 + x$, $1/2 - y$, $1/2 + z$					

TABLE-4				
PARAMETERS BETWEEN THE PLANES OF THE COMPOUNDS				

Cg	Distance between ring centroids (Å)	Dihedral angle (°)	Perpendicular distance of Cg(I) on Cg(J) (Å)	Perpendicular distance of Cg(J) on Cg(I) (Å)	
Compound 1					
Cg1-Cg1 ⁱⁱⁱ	4.714	0.03	3.482	3.482	
Cg1-Cg1 ^{iv}	3.691	0.03	3.474	3.474	
Compound 2					
Cg2-Cg2 ^v	4.908	58.72	1.428	4.685	
Cg2-Cg2 ^{vi}	4.518	0.00	3.435	3.435	
Symmetry codes: (iii): $-x, -y, 1-z$; (iv): $1-x, -y, 1-z$; (v): $1/2 - 2$					
x, $1/2 + y$, $1/2 - z$; (vi): $-x$, $-y$, $1 - z$. Cg1 is the centroid of C1-C6					
benzene ring of compound 1 . Cg2 is the centroid of C1-C6 benzene					
ring of compound 2					

and ¹H NMR spectra. Structures of the compounds were further confirmed by single crystal X-ray crystallography.

Structure description of the compounds: Figs. 1 and 2 give perspective views of compounds **1** and **2** with atomic labeling systems. X-ray crystallography reveals that the compounds are similar *bis*-Schiff bases. The molecules of the compounds adopt E configuration with respect to the methylidene groups. The distances of the methylidene bonds are 1.267(6) Å in compound **1** and 1.277(2) Å in compound **2**, confirm them as typical double bonds. The bond lengths in both compounds are comparable to each other and are within normal values^{15,16}. The dihedral angles between the two benzene rings are 0° due to the centrosymmetric of the compounds.

Fig. 1. A perspective view of the molecular structure of compound 1 with the atom labeling scheme. Thermal ellipsoids are drawn at the 30 % probability level. Hydrogen bonds are shown as dashed lines. Unlabled atoms are related to the symmetry operation 1 - x, 1 - y, 1 - z

Fig. 2. A perspective view of the molecular structure of compound 2 with the atom labeling scheme. Thermal ellipsoids are drawn at the 30 % probability level. Hydrogen bonds are shown as dashed lines. Unlabled atoms are related to the symmetry operation 1 - x, - y, 2 - z

Fig. 3. Molecular packing structure of compound 1, viewed along the b-axis direction. Hydrogen bonds are shown as dashed lines

Fig. 4. Molecular packing structure of compound **2**, viewed along the b-axis direction. Hydrogen bonds are shown as dashed lines

In the crystal structure of compound **1**, molecules are stack *via* $\pi \cdots \pi$ interactions along to the a-axis (Fig. 3). In the crystal structure of compound **2**, molecules are linked through C-H···O hydrogen bonds, to form chains. The molecules are further stack *via* $\pi \cdots \pi$ interactions along to the b-axis (Fig. 4).

Supplementary information

CCDC-1002202 for compound **1** and 1002203 for compound **2** contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at http: //www.ccdc.cam.ac.uk/const/retrieving.html or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223-336033 or E-mail: deposit@ccdc.cam.ac.uk.

REFERENCES

- R.P. Saini, V. Kumar, A.K. Gupta and G.K. Gupta, *Med. Chem. Res.*, 23, 690 (2014).
- F. Zhang, Q. Wen, S.-F. Wang, B. Shahla Karim, Y.-S. Yang, J.-J. Liu, W.-M. Zhang and H.-L. Zhu, *Bioorg. Med. Chem. Lett.*, 24, 90 (2014).
- M.M. Kamel, H.I. Ali, M.M. Anwar, N.A. Mohamed and A.M. Soliman, *Eur. J. Med. Chem.*, 45, 572 (2010).
- S.J. Ren, R. Wang, K. Komatsu, P. Bonaz-Krause, Y. Zyrianov, C.E. McKenna, C. Csipke, Z.A. Tokes and E.J. Lien, J. Med. Chem., 45, 410 (2002).
- P. Sambasiva Rao, C. Kurumurthy, B. Veeraswamy, G. Santhosh kumar, B. Narsaiah, K. Pranay Kumar, U.S.N. Murthy, S. Karnewar and S. Kotamraju, *Med. Chem. Res.*, 22, 1747 (2013).
- S.H. Sumrra and Z.H. Chohan, J. Enzyme Inhib. Med. Chem., 28, 1291 (2013).
- J.-Q. Ren, Q.-Z. Jiao, Y.-N. Wang, F.-Y. Xu, X.-S. Cheng and Z.-L. You, *Wuji Huaxue Xuebao*, 30, 640 (2014).
- J.-C. Zhang, Y.-N. Li, D. Huang, F.-Y. Xu, X.-S. Cheng and Z.-L. You, *Wuji Huaxue Xuebao*, **30**, 425 (2014).
- X.-S. Zhou, Z.-L. You, D.-M. Xian and D.-P. Dong, *Wuji Huaxue Xuebao*, 29, 850 (2013).
- Z.-L. You, X.-Y. Qiu, D.-M. Xian and M. Zhang, *Inorg. Chem. Commun.*, 26, 11 (2012).
- 11. Z.-L. You, D.-M. Xian and M. Zhang, Cryst. Eng. Comm., 14, 7133 (2012).
- Bruker, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA (2002).
- 13. G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector, University of Göttingen, Germany (1996).
- 14. G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008).
- 15. D.J. Darensbourg and D.R. Billodeaux, Inorg. Chem., 44, 1433 (2005).
- 16. A. Davis, C.A. Kilner and T.P. Kee, Inorg. Chim. Acta, 357, 3493 (2004).