

Asian Journal of Chemistry; Vol. 26, No. 19 (2014), 6691-6692 ASIAN JOURNAL OF CHEMISTRY

http://dx.doi.org/10.14233/ajchem.2014.16765

NOTE

Synthesis and Structural Characterization of Diiron Ethanedithiolate Complex [(µ-SCH₂)₂Fe₂(CO)₅]₂(Ph₂PCH₂CH₂CH₂CH₂PPh₂) Containing Bridging Diphosphine Ligand

WEI GAO*, DE-MEI SUN and PENG GAO

School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, P.R. China

*Corresponding author: E-mail: weigao415@aliyun.com

Received: 27 November 2013;	Accepted: 14 January 2014;	Published online: 16 September 2014;	AJC-15991

A diiron ethanedithiolate complex $[(\mu-SCH_2)_2Fe_2(CO)_5]_2(Ph_2PCH_2CH_2CH_2CH_2CH_2PPh_2)$ (1) has been prepared and characterized by spectroscopy. The title complex was synthesized by reaction of $[(\mu-SCH_2)_2]Fe_2(CO)_6$ (A) with dppb $(Ph_2PCH_2CH_2CH_2CH_2PPh_2)$ in the presence of the decarbonylating agent Me3NO-2H₂O in MeCN at room temperature in 66 % yield. The new complex was characterized by IR, ¹H NMR, ³¹P NMR and ¹³C NMR spectroscopy.

Keywords: Diiron ethanedithiolate, Dppb, Synthesis, Characterization.

[Fe-Fe]-hydrogenases are metalloenzymes that catalyze hydrogen metabolism in several microorganisms¹. X-ray crystallographic² and IR³ studies have revealed that the active site of [Fe-Fe]-hydrogenases consists of a butterfly [2Fe-2S] cluster linked to a cubic [4Fe-4S] cluster *via* the sulfur atom of a cysteinyl group. The bridging dithiolate could most likely be propane-dithiolate (PDT)⁴. Recently, many PDT model complexes⁵ for the active site of [Fe-Fe]-hydrogenases have been reported and characterized by various techniques⁶. In this paper, we report the synthesis and structural characterization of diiron ethanedithiolate complex containing a bridging diphosphine ligand dppb related to the active site of [Fe-Fe]-hydrogenases.

Reaction and operation was carried out under a dry, oxygen free nitrogen atmosphere with standard Schlenk and vacuumline techniques. MeCN was distilled with CaH₂ under N₂. Me₃NO·2H₂O, dppb and other materials were commercially available and used as received. Complex A^7 was prepared according to the literature procedures. IR spectra were recorded on a Nicolet 670 FTIR spectrometer. ¹H (³¹P, ¹³C) NMR spectra were obtained on a Bruker Avance 500 MHz spectrometer.

Synthesis: To a solution of $(\mu$ -SCH₂)₂Fe₂(CO)₆ (0.186 g, 0.5 mmol) in CH₃CN (20 mL) was added a solution of Me₃NO·2H₂O (0.056 g, 0.5 mmol) in CH₃CN (10 mL). The mixture was stirred at room temperature for 15 min and then was added dppb (0.107 g, 0.25 mmol). The new mixture was stirred for 1 h to give a red solution. The solvent was reduced *in vacuo* and the residue was subjected to TLC separation using CH₂Cl₂/petroleum ether (v/v = 1:2) as eluent. Collecting the

main red band afforded 0.183 g (66 %) of **1** as a red solid. IR (KBr v_{max} , cm⁻¹): C=O 2043 (vs), 1975 (*vs*), 1923 (vs) ¹H NMR (500 MHz, CDCl₃): δ 7.54, 7.40 (2s, 10 H, 2C₆H₅), 3.41 (s, 2H, PCH₂), 2.39 (s, 2H, PCH₂CH₂), 1.88 (s, 4H, 2SCH₂) ppm. ³¹P NMR (200 MHz, CDCl₃, 85 % H₃PO₄): δ 53.74 (s) ppm. ¹³C NMR (125 MHz): δ 215.55, 215.47, 210.16 (C=O), 136.43, 136.14, 132.07, 131.99, 130.26, 128.71, 128.64 (PhC), 34.92 (SCH₂), 33.68 (d, *J*_{P-C} = 26.0 Hz, PCH₂), 25.64 (d, *J*_{P-C} = 14.1 Hz, PCH₂CH₂) ppm.

ASIAN JOURNA OF CHEMISTRY

As shown in **Scheme-I**, the title complex could be prepared by reaction of complex **A** with 0.5 equivalent of dppb in the presence of the decarbonylating agent $Me_3NO\cdot 2H_2O$ in MeCN at room temperature in 66 % yield. The title complex **1** was air-stable red solids, which has been characterized by IR, ¹H NMR, ³¹P NMR and ¹³C NMR spectroscopy.

Infrared spectrum: As shown in Fig. 1, the IR spectrum of **1** showed three absorption bands in the range of 2043-1923 cm⁻¹ for the terminal carbonyls and the $v(C\equiv O)$ values are shifted toward lower frequencies relative to the parent complex **A** (2079, 2039, 2009, 1996 cm⁻¹)⁷.

¹**H NMR spectrum:** As shown in Fig. 2, the ¹H NMR spectrum of **1** displayed two singlets at δ 7.54 and 7.40 ppm for its phenyl protons and two singlets at δ 3.41 and 2.39 ppm for the methylene protons of dppb.

³¹**P NMR spectrum:** As shown in Fig. 3, the ³¹**P** NMR spectrum of **1** exhibited a singlet at δ 53.74 ppm for the two phosphorus atoms of dppb, each one coordinated to one Fe of the diiron subsite.

Fig. 2. ¹H NMR spectrum of the title complex 1

Fig. 3. ³¹P NMR spectrum of the title complex 1

Scheme-I: Synthesis of the title complex 1

ACKNOWLEDGEMENTS

The authros gratefully acknowledge the financial support by the Doctoral Research Fund of Henan University of Traditional Chinese Medicine.

REFERENCES

- 1. R. Cammack, Nature, 397, 214 (1999).
- 2. Y. Nicolet, C. Piras, P. Legrand, C.E. Hatchikian and J.C. Fontecilla-Camps, *Structure*, **7**, 13 (1999).
- 3. A.L. De Lacey, C. Stadler, C. Cavazza, E.C. Hatchikian and V.M. Fernandez, *J. Am. Chem. Soc.*, **122**, 11232 (2000).
- 4. P.H. Zhao, Y.Q. Liu and X.A. Li, Asian J. Chem., 25, 5428 (2013).
- 5. X.F. Liu and H.Q. Gao, J. Clust. Sci., 25, 495 (2014).
- (a) X.H. Liu, J.Q. Weng, C.X. Tan, L. Pan, B.L. Wang and Z.M. Li, *Asian J. Chem.*, 23, 4031 (2011); (b) P.Q. Chen, C.X. Tan, J.Q. Weng and X.H. Liu, *Asian J. Chem.*, 24, 2808 (2012); (c) Y.L. Xue, Y.G. Zhang and X.H. Liu, *Asian J. Chem.*, 24, 5087 (2012); (d) L.J. Luo, X.F. Liu and H.Q. Gao, *J. Coord. Chem.*, 66, 1077 (2013); (e) X.F. Liu and H.Q. Gao, *Polyhedron*, 65, 1 (2013).
- 7. A. Winter, L. Zsolnai and G. Huttner, Z. Naturforsch. C, **37b**, 1430 (1982).