

Synthesis and Characterization of Salamo-Type Bisoxime Compounds Based on 2-Hydroxy-4-methoxybenzaldehyde and *Bis*(aminooxy)alkane

LI WANG^{*}, WEI-MIN ZHOU, GANG LI and YANG ZHANG

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China

*Corresponding author: E-mail: wangli_78@126.com; kkil615@yahoo.com.cn

Received: 7 March 2014;	Accepted: 15 May 2014;	Published online: 1 September 2014;	AJC-15896
· · · · · · · · · · · · · · · · · · ·	1 2 /	1 /	

Three new Salamo-type bisoxime compounds $H_2L^1-H_2L^3$ have been synthesized from 2-hydroxy-4-methoxybenzaldehyde and 1,5bis(aminooxy)pentane, 1,6-bis(aminooxy)hexane or 1,9-bis(aminooxy)nonane in hot ethanol medium, respectively and characterized by elemental analysis, IR and ¹H NMR spectroscopy.

Keywords: Salamo-type compound, Synthesis, Characterization.

INTRODUCTION

Particular attention has been paid in recent years to the synthesis, characterization and application of Salen-type compounds¹. The new Salen-type bisoxime compounds have very important value that they are widely used in catalytic domain², medical field^{3,4}, analytical chemistry⁵, material world^{6,7}, *etc.* So we devoted to design and synthesis of a series of new Salamo-type bisoxime compounds which have farreaching significance. In the present study we have designed and synthesized three new Salamo-type bisoximes, named as 5,5'-dimethoxy-2,2'-[(pentane-1,5-diyldioxy)*bis*-(nitrilomethylidyne)]diphenol (H₂L¹), 5,5'-dimethoxy-2,2'-[(hexane-1,6-diyldioxy)*bis*(nitrilo-methylidyne)]diphenol (H₂L³).

EXPERIMENTAL

2-Hydroxy-4-methoxybenzaldehyde ($\geq 99\%$), 1,5dibromopentane (97%), 1,6- dibromohexane (97%) and 1,9dibromononane (97%) were purchased and used without further purification. Other reagents were analytical pure grade and purchased from Tianjin Chemical Reagent Factory. The others are the same as literature^{8.9}.

General procedure: Synthetic route to Salamo-type bisoxime compounds $H_2L^1-H_2L^3$ are shown in Fig. 1-4. 1,5-*bis*(aminooxy)pentane, 1,6-*bis*(aminooxy)hexane or 1,9-*bis*(aminooxy)nonane were synthesized according to an analogous method reported earlier⁷⁻⁹.

Preparation of 5,5'-dimethoxy-2,2'-[(pentane-1,5diyldioxy)bis(nitrilomethylidyne)]diphenol (H₂L¹): To an ethanolic solution (10 mL) of 2-hydroxy-4-methoxybenzaldehyde (304.3 mg, 2 mmol) was added an ethanolic solution (6 mL) of 1,5-*bis*(aminooxy)pentane (134.2 mg, 1 mmol). The reaction mixture was stirred at 328 K for 5 h. The formed precipitate was separated by filtration and washed successively with ethanol/*n*-hexane (1:4). The product was dried under vacuum to obtain white title compound H_2L^1 .

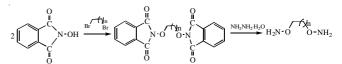


Fig. 1. Synthetic route to *bis*(aminooxy)alkane. H_2L^1 : n = 4; H_2L^2 : n = 5; H_2L^3 : n = 8

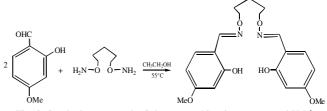
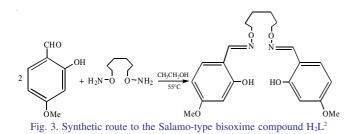



Fig. 2. Synthetic route to the Salamo-type bisoxime compound H₂L¹

Preparation of 5,5'-dimethoxy-2,2'-[(hexane-1,6diyldioxy)*bis*(**nitrilomethylidyne)]diphenol (H**₂L²): To an ethanolic solution (6 mL) of 2-hydroxy-4-methoxybenzaldehyde (194.5 mg, 1.28 mmol) was added an ethanolic solution (10 mL) of 1,6-*bis*(aminooxy)hexane (81.1 mg, 0.64 mmol). The reaction mixture was stirred at 328-333 K for 6 h. The formed precipitate was separated by filtration and washed successively with ethanol/*n*-hexane (1:4). The product was dried under vacuum to obtain white title compound H_2L^2 .

Preparation of 5,5'-dimethoxy-2,2'-[(nonane-1,9diyldi-oxy)bis(nitrilomethylidyne)]diphenol (H₂L³): To an ethanolic solution (5 mL) of 2-hydroxy-4-methoxybenzaldehyde (159.5 mg, 1.05 mmol) was added an ethanolic solution (5 mL) of 1,9-bis(aminooxy)nonane (99 mg, 0.52 mmol). The reaction mixture was stirred at 328 K for 8 h. The formed precipitate was separated by filtration under reduced pressure and washed successively with ethanol/*n*-hexane (1:4). The product was dried under vacuum to obtain white powder compound H₂L³.

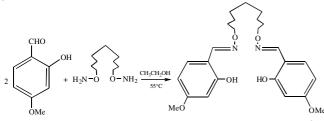


Fig. 4. Synthetic route to the Salamo-type bisoxime compound H₂L³

RESULTS AND DISCUSSION

Three Salamo-type bisoxime compounds $H_2L^1-H_2L^3$ have been synthesized with good yields and the compositions are confirmed by elemental analyses, IR, UV-visible and ¹H NMR spectroscopy.

Physico-chemical property: The colour, yields, melting points and elemental analytical results of the synthesized Salamo-type bisoxime compounds $H_2L^1-H_2L^3$ are presented in Table-1. Their compositions agree with the formulae. All the compounds are stable in air and soluble in chloroform, tetrahydrofuran, acetone, DMF, DMSO and hot methanol or

ethanol, insoluble in *n*-hexane. In addition, H_2L^1 are soluble in dichloromethane and acetonitrile, but H_2L^3 are insoluble in dichloromethane and just soluble in hot acetonitrile. H_2L^1 and H_2L^3 are easy to be dissolved in ethyl ether and acetic ether, but H_2L^2 are difficult to be dissolved in ethyl ether, simultaneously, it can't be dissolved in acetic ether.

IR spectra: The most important IR spectral data for Salamo-type bisoxime compounds $H_2L^1-H_2L^3$ are given in Table-2. In the IR spectrum of Salamo-type bisoxime compound H_2L^1 , 2950 and 2879 cm⁻¹ are the weak absorption peaks for both antisymmetric and symmetric stretching vibration absorption of C-H bond of methylene. In the IR Spectrum of Salamo-type bisoxime compound H_2L^2 , it contains v_{O-H} bond, but no corresponding peaks were observed near 3600 cm⁻¹, while at 3169 and 3072 cm⁻¹, there exists strong broad absorption peaks, indicating that Salamo-type bisoxime compound H₂L² may have freedom intramolecular hydrogen bond (OH…N and OH…O) and at 2945 and 2879 cm⁻¹, the weak absorption peak can be attributed to the antisymmetric and symmetric stretching vibration absorption of C-H bond from methylene. Similarly, infrared spectrum of Salamo-type bisoxime compound H₂L³ contains broad absorption peak at 3431 and 3161 cm⁻¹ also shows that the Salamo-type bisoxime compound H₂L³ may contain an intramolecular hydrogen bond (OH…N). The anti-symmetric and symmetric methyl stretching vibration absorption peak of C-H bond presented at 2989 and 2852 cm⁻¹ which was very weak.

Meanwhile, the characteristic C=N stretching bands of the Salamo-type bisoximes $H_2L^1-H_2L^3$ appear at 1609-1606 cm⁻¹, respectively¹⁰. And the Ar-O stretching bands occur at 1225, 1223 and 1211 cm⁻¹ for the Salamo-type bisoximes $H_2L^1-H_2L^3$, indicating that 2-hydroxy-4-methoxybenzaldehyde has been condensated with 1,5-*bis*(aminooxy)penpane, 1,6*bis*(aminooxy)hexane or 1,9-*bis*(aminooxy)nonane, respectively and formed new Salamo-type bisoximes¹¹. In the 1572-1441 cm⁻¹ region, the observed bands were attributed to aromatic C=C vibrations. IR spectral results of the Salamo-type bisoximes further confirmed the accuracy of the consequence. So in this research we have successfully synthesized the target compounds, H_2L^1 , H_2L^2 and H_2L^3 .

¹**H NMR spectra:** The ¹**H NMR** spectral data of the Salamotype bisoxime compounds $H_2L^1-H_2L^3$ in the solvent of CDCl₃ are shown in Table-3. The ¹**H NMR** analytical results are

TABLE-1 COLOUR, YIELDS, MELTING POINTS AND ANALYTICAL DATA OF SYNTHESIZED SALAMO-TYPE BISOXIME COMPOUNDS H ₂ L ¹ -H ₂ L ³								
Compound	Colour m.p. (K)	m.p. (K)	Yield (%)	m.f.	m.w.	Elemental analysis (%): Found (Calcd.)		
	3371 1	240.250	51.0	C II NO	402.44	C		
H_2L^1	White	349-350	51.8	$C_{21}H_{26}N_2O_6$	402.44	62.79 (62.67)	6.68 (6.51)	6.83 (6.96)
H_2L^2	White	349-350	46.5	$C_{22}H_{28}N_2O_6$	416.47	63.78 (63.45)	6.91 (6.78)	6.68 (6.73)
H_2L^3	White	465-467	32.3	$C_{25}H_{34}N_2O_6$	458.55	65.63 (65.48)	7.79 (7.47)	6.07 (6.11)

	KEY IR BANDS (cr	TABI m ⁻¹) FOR THE SALAMO-		MPOUNDS H ₂ L ¹ -H ₂ L ³	
Compound	ν(O-H)	$\nu(CH_2)$	v(C=N)	v(C=C) _{benzene ring}	v(Ar-O)
H_2L^1	3435	2950, 2879	1606	1568, 1506, 1467	1225
H_2L^2	3443	2945, 2879	1626	1572, 1505, 1464	1223
H_2L^3	3431	2989, 2852	1609	1568, 1505, 1441	1211

	TABLE-3 THE ¹ H NMR DATA FOR THE SALAMO-TYPE BISOXIME COMPOUNDS $H_2L^1-H_2L^3$
Compound	¹ H NMR (400 MHz, CDCl ₃ , δ/ppm)
H_2L^1	2.79 (s, 6H, CH ₂), 4.41 (s, 10H, CH ₂ -O, CH ₃ -O), 6.46 (d, <i>J</i> = 2.8 Hz, 2H, PhH), 6.47 (dd, <i>J</i> = 8.4 Hz, 2.6 Hz, 2H, PhH), 7.04 (d, <i>J</i> = 8.8 Hz, 2H, PhH), 8.17 (s, 2H, N=CH), 9.94 (s, 2H, OH)
H_2L^2	2.13 (t, <i>J</i> = 6.6 Hz, 2H, CH ₂), 3.64 (s, 6H, CH ₂), 4.26 (t, <i>J</i> = 6.20 Hz, 10H, CH ₂ -O, CH ₃ -O), 6.46 (d, <i>J</i> = 2.4 Hz, 2H, PhH), 6.50 (s, <i>J</i> = 2.4 Hz, 2H, PhH), 7.06 (S, 2H, PhH), 8.09 (s, 2H, N=CH), 10.02 (s, 2H, OH)
H_2L^3	2.02 (t, $J = 6.6$ Hz 2H, CH ₂), 3.81 (s, 18 H, CH ₂ , CH ₃ -O), 4.26 (t, $J = 6.20$ Hz, 4H, CH ₂ -O), 6.57 (d, $J = 2.8$ Hz, 2H, PhH), 6.58 (d, $J = 2.62$ Hz, 2H, PhH), 6.98 (s, 2H PhH), 8.09 (s, 2H, N=CH), 12.12 (s, 2H, OH)

consistent with the elemental analytical results and the synthesized Salamo-type bisoxime compounds $H_2L^1-H_2L^3$ is the target compounds. The ¹H NMR spectra showed a singlet at about 8.09-8.17 ppm indicating the existence of oxime bonds¹².

Conclusion

Three new Salamo-type compounds $H_2L^1-H_2L^3$ that have two oxime bonds instead of imine bonds have been designed and synthesized by the reaction of 2 equivalents of 2-hydroxy-4-methoxybenzaldehyde with 1,5-*bis*(aminooxy)pentane, 1,6*bis*(aminooxy)hexane or 1,9-*bis*(aminooxy)nonane in hot ethanol medium, respectively. The structures of the Salamotype bisoxime compounds $H_2L^1-H_2L^3$ have been analyzed by EA, IR spectra and ¹H NMR spectroscopy. The Salamo-type bisoxime compounds may be promising units for the construction of supramolecular metal complexes and have reference for the further investigation.

REFERENCES

- H.L. Wang, D.P. Zhang, Z.H. Ni, X.Y. Li, L.J. Tian and J.Z. Jiang, *Inorg. Chem.*, 48, 5946 (2009).
- J.K. Karjalainen, O.E.O. Hormi and D.C. Sherrington, *Tetrahedron Asymm.*, 9, 3895 (1998).
- 3. H. Chen and J. Rhodes, J. Mol. Med., 74, 497 (1996).
- A. Iqbal, H.L. Siddiqui, CM. Ashraf, M.H. Bukhari and C.M. Akram, *Chem. Pharm. Bull. (Tokyo)*, 55, 1070 (2007).
- S.T. Girousi, E.E. Golia, A.N. Voulgaropoulos and A.J. Maroulis, Fresenius J. Anal. Chem., 358, 667 (1997).
- M.N. Desal, P.O. Chauhan and N. Shan, *Eur. Symp. Corrision Inhibi*tors, 27, 891 (1995).
- 7. S. Akine, T. Tadokoro and T. Nabeshima, *Inorg. Chem.*, **51**, 11478 (2012).
- 8. W.K. Dong, X.N. He, H.B. Yan, Z.W. Lv, X. Chen, C.Y. Zhao and X.L. Tang, *Polyhedron*, **28**, 1419 (2009).
- W.K. Dong, C.Y. Zhao, Y.X. Sun, X.L. Tang and X.N. He, *Inorg. Chem. Commun.*, **12**, 234 (2009).
- S. Akine, T. Taniguchi, W. Dong, S. Masubuchi and T. Nabeshima, J. Org. Chem., 70, 1704 (2005).
- 11. J.A. Faniran, K.S. Patel and J.C. Bailar Jr., J. Inorg. Nucl. Chem., 36, 1547 (1974).
- 12. S. Akine, T. Taniguchi and T. Nabeshima, Chem. Lett., 30, 682 (2001).