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INTRODUCTION

Wood polysaccharides are composed of two main compo-

nents i.e., cellulose and polyoses (hemicelluloses)1. Besides

usage in paper, rayon or cellulose derivates production as main

component, cellulose is an important raw material after

conversation in to glucose. Polyoses are also hydrolyzed to

different monosaccharides. Main utilization of wood monosa-

ccharides including glucose, mannose, xylose, galactose,

arabinose and rhamnose is to produce other chemicals1-7.

The anthrone method is an ordinary spectrophotometric

procedure and applied for total sugar determination. This

procedure can be used rapid and cost effective to analyze various

samples. Anthrone substituted hexoses produce a blue colour

and pentoses a yellow-green colour in the solution8. This pro-

duced colour has a spectrophotometric response which is

compared to a curve based on a standard (in general glucose)

to determine the total sugar amount in the hexose solutions or

the solutions rich in hexose9-17.

In the previous studies, spectral data were used to deter-

mine the carbohydrate contents of Pinus radiata using Partial

Least Squares (PLS)18, the monosaccharide composition of

Eucalyptus globulus using  PLS data analysis method19 and

the hexose and pentose amounts using artificial neural network

(ANN)20.

Artificial neural networks consist of neurons which are

similar to their biological counterparts. The interconnections

of neurons organized in different layers including input, hidden
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and output are computed with neural connection weights which

can be modified during the training step of network. For weight

optimization of network, the activation function and back

propagation algorithm are utilized. The connection weights

are adapted to minimize the error between the desired target

data values and their predicted data values. After the weights

have been determined, the performance of the network is

checked on a test set for fixing the network accuracy in predic-

ting external data sets. This procedure is repeated for various

networks to obtain an optimum artificial neural network struc-

ture21-30.

In this study, quick and easily estimation of Pinus brutia

Ten. (brutian pine) sugar composition which consist of hetero-

geneous monosaccharides (hexoses and pentoses) including

glucose, mannose, xylose, galactose and arabinose was aimed.

UV-visible spectra from anthron substituted monosaccharides

were collected and from these spectra, monosaccharide

composition of P. brutia Ten. was estimated using artificial

neural network modelling.

EXPERIMENTAL

The P. brutia Ten. samples were wood discs taken at 1.30

m height from 30-35 year-old trees from Asagi Gokdere-Isparta

and Kas-Antalya in Turkey. The disc of each tree was debarked

and chipped. After air drying, wood chips were separately

ground to pass 40-100 mesh in Retsch SK 1 mill. The milled

wood material was extracted with 2:1 cyclohexane:ethanol and



followed by extraction with ethanol in Buchi extraction system

B-811.

For acid hydrolysis, Pettersen et al.31 method was used.

200 mg extracted wood meal (on oven dry basis) were firstly

hydrolyzed for 1 h at 30 °C in 72 % H2SO4, then diluted to

3 % and secondly hydrolyzed for 1 h at 120 °C in P-Selecta

autoclave. After filtering and washing the Klason lignin, the

filtrate and washing water were transferred to 1 L volumetric

flask. 0.5 mL of this solution was diluted to 1 mL by adding

distilled water. 2 mL anthrone reagent (200 mg anthrone

suspended in 100 mL 96-98 % H2SO4) were added to 1 mL

solution of each sample. The solutions were submitted to a

boiling water bath for 10 min11. After cooling, the spectra of

solutions were recorded in Perkin Elmer Lambda 20 UV/

visible Spectrometer in the wave number range 190-900 nm.

Five spectra per sample were collected. For each UV-visible

spectrum, baseline was corrected and defined by connecting

the absorbance value at 470 and 740 nm then 135 absorbance

values (difference between value and the baseline) between 470

and 740 nm were used in the artificial neural network modelling.

From the 1 L acid hydrolyze solution, monosaccharide

composition of each P. brutia Ten. sample was determined

according to the gas chromatographic procedure of Cao et al.32

and expressed as percentage of oven dried extract-free material.

Artificial neural network models were employed using

sigmoidal logistic function with back propagation of error

algorithm. 45, 15 and 10 data pairs were chosen randomly

from the bottom, middle and top values of data and used for

training, testing and validation sets, respectively. In a data pair

(inputs-output), inputs composed of 135 points (absorbance

values) between 470 and 740 nm from UV-visible spectrum

of each sample as neurons in the input layer and outputs were

glucose, mannose, xylose, galactose and arabinose amounts

as five neurons in the output layer. Artificial neural networks

were trained with different number of neurons in the hidden

layer. The structure and the topology of used network are

indicated in Figs. 1 and 2, respectively.

However, the logistic function was used as activation

function in the network construction. Therefore, all data were

normalized into a range 0.1-0.9 using equation 1 before

presenting to artificial neural network.
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XN: The normalized value of the input or the output data

X: Original value of the data

Xmax and Xmin: The maximum and the minimum original

values of the data

The classification performance of trained network model

is then evaluated on an introducing test set. The overall accuracy

of the artificial neural network models was measured using

root mean square (RMS) error by eqn. 2 below:
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N: The number of data

X'i :The target value

Xi : The output value produced by the network

Determining the values of 135 independent variables

[The input data matrix (135x60)]

Determining the values of 5 dependent variables

[The output data matrix (5x60)]

Preparation of the training data set:

 

[The input data matrix (135x45)]; [The output data matrix (5x45)]
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Fig. 1. Operational sequence of the artificial neural network (ANN)

simulation method

The input layer The hidden layer The output layer

b1 b2

A
b

so
rb

an
ce

v
al

u
es

b
et

w
ee

n

4
7

0
an

d
7

4
0

n
m

Glucose

Mannose

Xylose

Galactose

Arabinose

Fig. 2. Network architecture used for prediction of monosaccharide

composition of P. brutia Ten. samples from UV-visible spectral data

RESULTS AND DISCUSSION

From the spectrophotometric measurements, absorbance

values between 470 and 740 nm were used in the artificial

neural network modelling after baseline correction (Fig. 3).
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Fig. 3. UV-visible Spectrum of P. brutia Ten. sample A: Original spectrum

B: Baseline corrected spectrum

Glucose, mannose, xylose, galactose and arabinose were

determined as monosaccharides in P. brutia Ten. samples.

Contents of monosaccharides are shown in Fig. 4. In the figure,
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Fig. 4. Monosaccharide amounts of P. brutia Ten. samples (Glu: glucose,

Man: mannose, Xyl: xylose, Gal: galactose and Ara: arabinose)

amount of each monosaccharide was expressed as percentage

of oven dried extract-free material. Glucose amounts were

varied between 42.33-54.67, 42.41-54.45 and 42.86-54.28 %,

Mannose amounts between 8.55-11.95, 8.58-11.85 and 8.65-

11.84 %, xylose amounts between 7.15-9.83, 7.17-9.82 and

7.18-9.81 %, galactose amounts between 1.72-2.49 , 1.77-2.44

and 1.8-2.42 %, arabinose amounts between 1.19-1.65, 1.2-

1.64 and 1.21-1.62 % in the training, testing and validation

step of artificial neural network, respectively.

After training and testing, the number of hidden neurons

of the network was obtained by evaluating the performance

determined using RMS error of the network models (Table-1).

The NN3 model with 6 hidden neurons was chosen to estimate

the monosaccharide contents because the average RMS error

for testing data sets was the lowest value.

Fig. 5 indicates the predicted values of monosaccharide

contents from the NN3 model and the actual (target) values

for the training data set by linear regression. The results showed

that agreement between the predicted and the actual monosa-

ccharide contents generally good with correlation R2 values

of 0.9987, 0.9984, 0.9978, 0.9916 and 0.9964, respectively.

NN3 model provided also good correlation between

predicted and actual data in the testing. For glucose, mannose,

xylose, galactose and arabinose, correlation coefficients (R2)

were fairly high and 0.9984, 0.9938, 0.9945, 0.9902 and

0.9949, respectively (Fig. 6).

To show validation of the model selected, the data pairs

of 10 additional samples were used. Experimental and

predicted results from the model NN3 were given in Table- 2.

As can be seen from the table, the predicted values were close

to actual values of monosaccharide composition with an average

per cent relative error of 1.2.

In conclusion, the high correlation coefficients (R2) in the

training and testing and the low average relative error of predic-

tion in the validation indicate that three layered artificial neural
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2
= 0.9987

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target glucose (training)

 = 0.9984R
2 

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target mannose (training)

R
2
 = 0.9978

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target xylose (training)

R
2
 = 0.9916

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target galactose (training)

R
2
 = 0.9964

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target arabinose (training)

P
re

d
ic

te
d
 g

lu
co

s
e 

(t
ra

in
in

g)

P
re

d
ic

te
d
 m

a
n
n
o
se

 (
tr

a
in

in
g
)

P
re

d
ic

te
d
 x

y
lo

se
 (

tr
a
in

in
g
)

P
re

d
ic

te
d
 g

a
la

ct
o
s
e 

(t
ra

in
in

g
)

P
re

di
ct

e
d
 a

ra
b
in

o
se

 (
tr

a
in

in
g
)

Fig. 5. Prediction performance of NN3 model for monosaccharide composition training data set
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Fig. 6. Prediction performance of NN3 model for monosaccharide composition testing data set

TABLE-1 
COMPARISON OF THE PERFORMANCES OF THE NETWORK MODELS 

RMS error 
Model 

Glu-training Glu-testing Man-training Man-testing Xyl-training 

NN1 135-2-5 0.009238 0.009707 0.008325 0.011267 0.01148 

NN2 135-4-5 0.008849 0.012185 0.007921 0.010158 0.010701 

NN3 135-6-5 0.007189 0.009534 0.00777 0.0175 0.009542 

NN4 135-8-5 0.007483 0.113164 0.007225 0.173894 0.009322 

NN5 135-10-5 0.006246 0.040356 0.007811 0.037284 0.007672 

 Xyl-testing Gal-training Gal-testing Ara-training Ara-testing 

NN1 135-2-5 0.016922 0.035139 0.029277 0.018951 0.01519 

NN2 135-4-5 0.016647 0.027799 0.037774 0.018327 0.014432 

NN3 135-6-5 0.016848 0.016624 0.021082 0.012147 0.015748 

NN4 135-8-5 0.217871 0.009992 0.325494 0.013815 0.214475 

NN5 135-10-5 0.051963 0.014298 0.086908 0.008773 0.051045 

Glu: Glucose, Man: Mannose, Xyl: Xylose, Gal: Galactose and Ara: Arabinose 

 

TABLE-2 
PERFORMANCE OF NN3 MODEL IN THE VALIDATION STEP 

Monosaccharide composition (%) 

Glucose Mannose Xylose Galactose Arabinose 
Sample 

Actual Predicted RE % Actual Predicted RE % Actual Predicted RE % Actual Predicted RE % Actual Predicted RE % 

1 45.03 45.41 0.84 11.27 11.14 -1.15 9.35 9.42 0.75 2.35 2.38 1.28 1.56 1.58 1.28 

2 46.20 46.08 -0.26 10.97 11.25 2.55 9.19 9.06 -1.41 2.26 2.24 -0.88 1.53 1.52 -0.65 

3 47.42 46.97 -0.95 10.64 10.33 -2.91 8.84 8.89 0.57 2.12 2.10 -0.94 1.48 1.46 -1.35 

4 42.86 42.75 -0.26 11.84 11.99 1.27 9.81 9.69 -1.22 2.41 2.45 1.66 1.62 1.64 1.23 

5 46.90 47.28 0.81 10.73 10.52 -1.96 8.81 8.97 1.82 2.21 2.19 -0.90 1.49 1.51 1.34 

6 44.08 44.27 0.43 11.68 11.84 1.37 9.62 9.48 -1.46 2.42 2.39 -1.24 1.60 1.58 -1.25 

7 49.69 49.96 0.54 9.89 9.68 -2.12 8.20 8.35 1.83 2.04 2.02 -0.98 1.38 1.40 1.45 

8 51.75 51.62 -0.25 9.45 9.58 1.38 7.85 7.98 1.66 1.94 1.92 -1.03 1.31 1.33 1.53 

9 54.28 54.64 0.66 8.65 8.44 -2.43 7.18 7.11 -0.97 1.80 1.78 -1.11 1.21 1.19 -1.65 

10 46.52 46.30 -0.47 10.91 10.79 -1.10 9.12 9.22 1.10 2.24 2.22 -0.89 1.51 1.50 -0.66 
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network with 6 hidden neurons can properly model complex

relationship between UV-visible spectral data and mono-

saccharide composition of P. brutia Ten. wood.

REFERENCES

1. D. Fengel and G. Wegener, Wood-Chemistry, Ultrastructure Reaction,

Walter de Gruyter, Berlin (1984).

2. J. Lee, J. Biotechnol., 56, 1 (1997).

3. B.K. Ahring, D. Licht, A.S. Schmidt, P. Sommer and A.B. Thomsen,

Bioresour. Technol., 68, 3 (1999).

4. J.N. Nigam, J. Biotechnol., 87, 17 (2001).

5. J. Robinson, J.D. Keating, S.D. Mansfield and J.N. Saddler, Enzyme

Microb. Technol., 33, 757 (2003).

6. J. Söderström, L. Pilcher, M. Galbe and G. Zacchi, Biomass Bioenergy,

24, 475 (2003).

7. A. Sues, R. Millati, L. Edebo and M.J. Taherzadeh, FEMS Yeast Res.,

5, 669 (2005).

8. W. Blaschek, in eds.: G. Franz, Polysaccharide, Springer Verlag, Berlin-

Heidelberg-New York, Chap. 2, pp. 17-47 (1992).

9. R. Li, J.J. Volenec, B.C. Joern and S.M. Cunningham, Crop Sci., 36,

617 (1996).

10. J. Moreno, C. Vargas-Garcia, M.J. Lopez and G. Sanchez-Serrano, J.

Appl. Microbiol., 86, 439 (1999).

11. W. Praznik, N. Mundigler, A. Kogler, P. Huber, A. Huber and M. Wollendorfer,

Starch/Stärke, 51, 197 (1999).

12. A.K.K. Achakzai and S.A. Kayani, Asian J. Plant Sci., 1, 618 (2002).

13. F.L. Consoli and S.B. Vinson, Comp. Biochem. Physiol. B, 132, 711

(2002).

14. A.K.K. Achakzai, S.A. Kayani, M. Yaqoob and A. Nabi, J. Biol. Sci.,

3, 882 (2003).

15. A. Oren and L. Mana, FEMS Microbiol. Lett., 223, 83 (2003).

16. G.D. Manrique and F.M. Lajolo, Postharvest Biol. Technol., 33, 11

(2004).

17. L. Zhang, Z. Lu, Z. Yu and X. Gao, Food Contr., 16, 279 (2005).

18. R. Meder, S. Gallagher, K.L. Mackie, H. Bohler and R.R. Meglen,

Holzforschung, 53, 261 (1999).

19. J. Rodrigues, J. Puls, O. Faix and H. Pereira, Holzforschung, 55, 265

(2001).

20. S. Yasar, Acta Chim. Slov., 52, 435 (2005).

21. J. Zupan and J. Gasteiger, Anal. Chim. Acta, 248, 1 (1991).

22. J. Zupan and J. Gasteiger, Neural Networks for Chemists-An Intro-

duction, VCH, Weinheim (1993).

23. J. Zupan, Acta Chim. Slov., 41, 327 (1994).

24. S. Agatonovic-Kustrin, M. Zecevic and Lj. Zivanovic, J. Pharm.

Biomed. Anal., 21, 95 (1999).

25. H.M. Henrique, E.L. Lima and D.E. Seborg, Chem. Eng. Sci., 55, 5457

(2000).

26. Z. Ramadan, X.-H. Song, P.K. Hopke, M.J. Johnson and K.M. Scow,

Anal. Chim. Acta, 446, 231 (2001).

27. R.B. Boozarjomehry and W.Y. Svrcek, Comput. Chem. Eng., 25, 1075

(2001).

28. M.S. Chun, J.J. Yi and Y.H. Moon, J. Mater. Process. Technol., 111,

146 (2001).

29. M. Fullana, F. Trabelsi and F. Recasens, Chem. Eng. Sci., 55, 79 (2000).

30. X. Yao, X. Zhang, R. Zhang, M. Liu, Z. Hu and B. Fan, Talanta, 57,

297 (2002).

31. R.C. Pettersen, V.H. Schwandt and M.J. Effland, J. Chromatogr. Sci.,

22, 478 (1984).

32. B. Cao, U. Tschirner, S. Ramaswamy and A. Webb, Tappi J., 80, 193

(1997).

6088  Yasar Asian J. Chem.


