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INTRODUCTION

Quantitative structure-activity relationship (QSAR) indi-

cates the relationship between structural property and biolo-

gical activity of compounds, which are widely used in the field

of pharmacy, materials science, agronomy, environment, etc.1,2.

The basic construction procedures of QSAR model include

four important steps.Firstly, as the structural description of

the training set compounds is recorded, this structural infor-

mation and relative biological activity are used to construct

correlation function model by suitable algorithm. Afterwards,

statistical methods are applied for internal validation of the

model. Finally, the test set is used for external test of the model.

Reliable QSAR model should be satisfied with the requirement

of internal validation and external validation3,4. The main

purpose of QSAR model is to predict the activity of compounds,

guide compound design and optimize leads.

Classification of QSAR methodologies: Different

classification methods of QSAR were presented to make the

study more reliable and credible. The two main methods, intro-

duced as following, have been widely accepted by QSAR

researchers.
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The first classification method is based on the different

dimensions of molecular features, which is also called multi-

dimensional QSAR including 2D-QSAR, 3D-QSAR, 4D-

QSAR and so on. Physicochemical properties and 2D structure

descriptors are always calculated as structural features for 2D-

QSAR models construction. The molecular features for 3D-

QSAR models are based on the non-covalent force field around

the specific conformation of the compound. Based on 3D-

QSAR principle, 4D-QSAR, 5D-QSAR and 6D-QSAR add

structural properties, respectively to make QSAR model more

coincident with the true active mode of molecules, such as the

whole molecular conformations of ligands, influence of ligand-

receptor interactions and solvation5,6. The development of

multi-dimensional molecular features is a rewarding process,

by which the QSAR models can be more reliable and more

effective. However, the study of the 2D-QSAR and 3D-QSAR

are widely engaged by many researchers, comparing with 4D-

QSAR to 6D-QSAR which are reported by a few researchers.

The second classification method is based on the different

species of predictive activities. Generalized QSAR also includes

quantitative structure-property relationships (QSPR), quanti-

tative structure-toxicity relationship (QSTR), quantitative
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structure-spectrum relationship (QSSR), etc.7-9. The expansion

of the classification makes QSAR widely used in multi-disci-

plinary. But sometimes, the compound study on the physico-

chemical properties, toxicity and spectral properties is directly

categorized as QSAR by part of the researchers10.

In addition, there are also other classification methods.

Based on correlation analysis, QSAR models can be divided

into linear models and non-linear models11,12. Besides, QSAR

models are also classified as receptor-dependent QSAR and

receptor-independent QSAR depending on whether consi-

dering the molecule-receptor binding way5. According to these

two kinds of classification methods, certain specific charac-

teristic of building model is only considered. However, if

QSAR is only divided into two types, it will be unsuitable to

systematically induce principles and methods, because of the

diversity and complexity of QSAR.

Multi-scale QSAR: Nowadays, there are many great

challenges for QSAR. Not only the predictive defects of it are

found, but also a variety of advanced molecular modeling

methods and up-to-date experimental techniques have been

presented13,14. In order to cope with these challenges, a new

trend of QSAR development is discussed in this paper, which

is named as multi-scale QSAR.

Multi-scale QSAR refers to the use of different simulation

methods to investigate three scales of research objects, which

include micro-scale simulation, mesoscopic-scales imulation

and macroscopic-scale simulation15-17. Different QSAR models

are built in different scales based on the various computing

precision of research objects. From the perspective of QSAR

model building process, multi-scale research objects refer to

the structural description of the training set. The applications

of multi-scale research objects in the process of building QSAR

model are presented in Fig. 1, wherein the main research aim

of multi-scale QSAR is small molecules and macromolecules.

Different methods for molecules can be selected at three scales,

namely micro, mesoscopic and macroscopic scale. Moreover

biological activities of multi-scale QSAR are also expanded

from the traditional binding affinity to various fields, which

play a vital role for the development of multi-scale QSAR, as

multi-scale QSAR need to describe molecules under specific

conditions as much as possible. Also, compared to no target

and single target, the study of multi-scale QSAR pays conti-

nuing attention to multi-target areas. Therefore, innovation of

modeling algorithms is an important research field for multi-

scale QSAR.

Quantum chemical methods can be used for accurate

calculation in micro-scale simulation, like atom-based QSAR18.

Molecular force field methods are often used in mesoscopic-

scale simulation, including fragment-based QSAR and small

molecular-based QSAR. Macroscopic-scale simulation usually

carries on coarse-grained study, including macromolecule-

based QSAR, multi-target-based QSAR and cell-based QSAR.

With multi-scale progress of drug development, molecules

predicted and designed at different scales are a new research

direction of QSAR technology19. The purpose of the develop-

ment trend of multi-scale QSAR is to expand the usefulness

of QSAR, which provides a more effective guide for drug design

and expands a predicted range of QSAR. So it is true that multi-

scale QSAR is also called purpose-oriented methods. Mean-

while, this classification method more methodically summa-
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Fig. 1. Applications of multi-scale research objects in the process of building QSAR model
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rizes QSAR, which can effectively include all existing QSAR

methods. Multi-scale QSAR has also pointed out the direction

and guided the progress of QSAR technology.In this review,

the advantages, basic concept, historical origins, mature

technology and recent research results of each scale modeling

methods of QSAR are all discussed in this passage.

Atom-based QSAR: Atom-based QSAR is a method of

the description of compounds structure in atomic scale and the

construction of according QSAR model. Atom-based QSAR

was studied for long time and has been applied in 2D-QSAR

and 3D-QSAR. It originated from atom-based physicochemical

properties in 1991 and atom-based template alignment in

199920,21. 2D-atom-based QSAR was enlightened by atom-

based physicochemical properties. It was until 2005 that the

first atom-based indices, atom-based quadratic indices, was

presented22. Afterward, other atom-based indices have been

proposed, including atom-based 3D-chiral quadratic indices23,

atom-based bilinear indices24, etc.

3D atom-based QSAR was enlightened by atom-based

template alignment approach. Then RMS fitting atom-based

QSAR25, pharmacophore-based alignment QSAR and 3D atom-

based QSAR were gradually proposed26. In essence, 3D atom-

based QSAR is a creation of overlap way. Since the traditional

template-based alignment might be affected by human factors

which may cause problems in objectivity and accuracy of the

model, pharmacophore-based alignment and docking-based

alignment emerged. But still, some problems exist in pharma-

cophore-based alignment, like the expression of steric. Also,

that was the reason for the atom-based alignment was deve-

loped. 3D atom-based QSAR is a combination of pharmaco-

phore and 3D-QSAR methods. Pharmacophore method is

based on the characteristics of interaction, which can effec-

tively find reasonable pharmacophore features, while 3D-QSAR

is based on the inherent feature of the molecules which can

represent some features that pharmacophore cannot represent,

like the ligand’s possible steric clashes with the receptor.

PHASE was used in drug design by Dixon et al.26, wherein

a molecule was treated as a set of overlapping of the van der

Waals spheres. Each sphere was encoded by rules for descri-

bing the basic characteristics of chemical structure. The model

of superimposed training set of molecules was placed into a

regular grid of cube and each cube was allocated zero or more

“bits” to accommodate different types of atoms. This represen-

tation presented binary-valued occupation patterns, which

could be known as independent variables. In their studies, 3D

atom-based QSAR model of human dihydrofolate reductase

(hDHFR) inhibitors was constructed by PHASE. Favorable

or unfavorable region and pharmacophore were visualized.

Also, model presented a reasonably good correlation in train

set and test set. Compared with the predictive rate of active

compound calculated by Catalyst/HypoGenQSAR models

(67 %), PHASE model was proved to be higher rate (74 %).

Nowadays, PHASE is widely used in drug design as mature

3D atom-based QSAR technique27,28. The use of atom-based

QSAR can be more beneficial to the development of new drugs,

which is aimed at exacting the contour map to atom to facilitate

further drug design.

Fragment-based QSAR: In recent years, fragment-based

QSAR is highly appreciated by researchers. Researchers hope

to define the impact of molecular fragments on active compounds.

So, to some extent, predicting the activity of molecular frag-

ments is more significant than forecasting the activity of the

whole molecule.The origin of fragment-based QSAR can

be traced back to 1964, when the Free-Wilson QSAR was

proposed29.

Fragment-based QSAR includes 2D-QSAR and 3D-QSAR.

The most typical 2D fragment-based QSAR is fragment-based

QSAR (FB-QSAR), which is presented by Song and Clark30.

Two-dimensional molecular descriptors are used in FB-QSAR

to describe the structure of the compound, including physical

and chemical parameters of compounds and heavy index of

fragments31. There are also some other 2D-fragment-based

QSAR methods, including Hologram QSAR (HQSAR), frag-

ment-similarity based QSAR (FS-QSAR) and so on. Therefore,

2D fragment-based QSAR has been widely used as an impor-

tant measure in fragment-based drug design32.

Typical 3D fragment-based QSAR is Topomer CoMFA,

which is an extension of the traditional CoMFA and is first

reported by Cramer33. A Topomer is a bioisosteric shape of

fragment. The rotatable key of molecules is cut into two or more

fragments.Based on the theory that the same Topomer have

the same biological activity, CoMFA columns are generated

by cycles and computations for further analysis. Auto-align-

ment is the biggest feature of Topomer CoMFA, which can

avoid the subjectivity of overlapping and generate more reliable

QSAR models. Meanwhile, compared with traditional CoMFA,

Topomer CoMFA is more rapid and efficient to regress automa-

tically. Besides, virtual screening can also be performed by

Topomer search34. In a word, Topomer CoMFA is a good tech-

nical method used in the transition of skeleton and substitute

of the R-groups, which can providedrug design with wealthy

structures35.

Small molecular-based QSAR: Small molecular-based

QSAR, as the most classical QSAR, is one of the receptor-

independent QSAR. Research of QSAR was carried on in the

early years. The presentation of Hansch method in 1964 was

known as the beginning of small molecular-based QSAR36. In

terms of 2D-QSAR, the structural index and physico-chemical

parameters of the molecules was considered as the independent

variable, regardless of the three-dimensional structure of the

compounds. Additionally, the proposed comparative molecular

field analysis (CoMFA), a 3D-QSAR method, was known as

the second leap to small molecular-based QSAR in 198837. In

terms of 3D-QSAR, the conformation of the molecule in three-

dimensional space was contained. As CoMFA is proposed,

small molecular-based QSAR comes into a period of rapid

development. Then, a large number of 3D-QSAR methods

have been proposed, including k-Nearest Neighbor Molecular

Field Analysis (kNN-MFA),self-organizing molecular field

analysis (SoMFA), comparative molecular similarity indices

analysis (CoMSIA), etc.12,38.

3D-QSAR, which was regarded as the basic method of

model generation, has directly led the proposed concept of

multi-dimensional QSAR. Accordingly, in 4D-QSAR, all

conformations of molecules were taken into account rather

than a single conformation39. 5D-QSAR builds a virtual receptor

analog, considering the interaction between ligand and virtual

receptor40. Besides, in 6D-QSAR, solvation is added so as to
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simulate true molecular mode of action41,42. Despite the diffe-

rences, the multi-dimensional QSARs derived from the same

origin. It can be considered as a great progress from 2D-QSAR

to 3D-QSAR; however,it is not an obvious leap from three to

six dimensions.Small molecular-based QSAR belongs to

receptor-independent QSAR and actual receptor molecules

were not used in the research, which is a defect to the develop-

ment of drug design based on target. This is a big limitation

but also an essential advantage of QSAR. After all, not all of

the targetshave been or can be separated43.

Macromolecule-based QSAR: Macromolecule-based

QSAR is a QSAR model of protein and nucleic acid. To intro-

duce macromolecule-based QSAR, the first problem is to des-

cribe the structure of macromolecule. But it is difficult for

description of the structure of the entire macromolecules,

because of the sequence complexity and conformation diversity

of macromolecule. As early as the 1980s, researchers have

constructed peptide QSAR model based on the position and

physico-chemical properties of amino acids in the primary

sequence44,45. Further, description of macromolecules was

generally characterized by sequence parameters, physico-

chemical descriptor and so on by subsequent researchers.

Quantitative sequence-activity models (QSAM) are typical

methods of building relationships between the sequence and

the activity of macromolecule46,47. With further research, more

methods of describing macromolecules have been proposed.

Three typical methods are listed as follows:the first is slicing

macromolecule into fragments to characterize, like amino acid-

based peptide prediction (AABPP). The second is the overall

characterization of macromolecules through the network

descriptors, which is called network-QSAR. The third is to

describe the part of the macromolecular structure, not expect to

get the whole scheme, like biomacromolecule QSAR (BioQSAR).

AABPP is a macromolecules study method based on charac-

terizing macromolecular fragments. It is not a macromolecule-

based QSAR in the strict sense, but more similar to the

fragment-based QSAR. Characterization of macromolecules

depends on structure descriptors and weight descriptors of the

amino acid fragment48,49. In contrast,the network-QSAR and

bioQSAR, which are recently proposed, is to predict the activity

of macromolecules from a holistic perspective.

The basic principle of network-QSAR is to use network

descriptors to describe the structure of the molecules and

construct model,wherein protein molecules are described

through lattice network descriptors and amino acids are

expressed numerically. Sequence and structure of associated

proteins and non-associated proteins are described by network.

Network descriptors are formed to describe related proteins

and non-related proteins. Network-QSAR model is established

by classification discriminant model, so as to determine whether

sealed proteins are objective proteins or not 50.

Zhou et al.51 presented BioQSAR to infer the biological

functions of structure-available macromolecule. 144 affinity-

known complexes were used to construct models. Firstly, the

binding surface of the protein and ligand is determined. Then

five varieties of descriptors are used to describe the interaction

of the ligand with the receptor, including constitutional descrip-

tors, contacting descriptors, geometrical descriptors, physico-

chemical descriptors and non-bonded descriptors. Finally,

linear and nonlinear machine learning protocols are used to

build the models. In their studies, three BioQSAR models were

built and the model built by Genetic algorithm-Gaussian

process (GA-GP) showed the best statistical results. Compared

with conventional methods, BioQSAR has a better ability to

predict and interpret the binding affinity between proteins.

Multi-target-based QSAR: There are two significant

drawbacks presented in Traditional QSAR methodologies,

which are small training set and single-target study. Multi-

target-based QSAR (mt-QSAR) can be more effective to solve

these problems52. Multi-target-based QSARbecomes more

prevalent in recent years and the basic principle is to use the

joint model to predict multi-target effects on drug molecules.

Gonza’lez-Diaz et al.53 and Prado-Prado et al.54 have made

important contributions to multi-target-based QSAR.

Mt-QSAR is one of 2D-QSAR methods. To be more

specific, the basic principle to build mt-QSAR is broadly

divided into the following steps: Initially, molecular structure

is described by molecular descriptors. Then the active and non-

active compounds are used to build single target discriminant

model. Next, various single target models are combined to

form mt-QSAR by non-linear Artificial Neural Networks

(ANNs) or Linear Discriminant Analysis (LDA)55. In recent

years, more algorithms are used to construct mt-QSAR, such

as Moving Average Analysis (MAA), Linear Neural Network

(LNN) and multiple linear regressions (MLR)56,57. The advan-

tage of multi-target-based QSAR is the ability to build biolo-

gical networks relied on multi-target. Then multi-target drugs

are developed through taking advantage of the principles of

systems biology and network pharmacology research. Multi-

target-based QSAR model can also predict multiple biological

entity activities of drug molecules,including protein, partition

system, tissue, microorganism and so on.

Speck-Planche et al.58 established two multi-target-based

QSAR models aimed at seven HIV-related proteins and used

these models to obtain relevant functional fragment for multi-

target molecules design. 745 compounds which contained 150

non-active compounds were described by fragment-based

descriptors or global 2D descriptors, wherein the model built

by fragment-based descriptors was presented in this equation:

 ∑ ∑∑ +++=
−

k k

kkkk

k

kk0IPHIV kDdifdavgDcDbaA (1)

This is the kernel function of the mt-QSAR. AHIV-IP is a

score to discriminate the activity against one protein. Dk means

the different fragment-based descriptor. Besides, avg Dk and

dif Dk are average and deviation values, respectively. These

parameters were used to describe that ligands were, respec-

tively matched with seven proteins. The a0 is the const, while

bk, ck and dk are the coefficients of the variables. Moreover,both

LDA and ANN could be used to form QSAR model, but ANN

model was proved to be a better statistical quality than LDA.

Meanwhile, active fragments were used to design and predict

multi-target drug, six molecules were theoretically designed

to inhibit seven protein related HIV.

Cell-based QSAR: Cell-based QSAR is an innovative

way to describe the essence of biological activity. The tradi-

tional methods of describing the activities merely rely on

experimental data on the activity of one target or cell. But
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sometimes, it is difficult for biological macromolecules to be

separated and to obtain the binding affinity. Even if the binding

affinity could be obtained, it cannot successfully express the

mode of action of drugs in vivo. For reasons given above, the

application of QSAR is limited. Therefore, in order to describe

active mode of drugs in vivo more veritably, cell-based QSAR

was raised in 201159,60.

The basic principle of cell-based QSAR is that disposition

values can be added to the traditional binding affinity. So a

description of the biological activity is used to describe drug

molecules. The eqn. 2 was used to build the relationship for

cell-based QSAR.

)]t,p(DFlog[)Klog(
EC

1
log

50

+=









(2)

In terms of the equation, log K is an MSMM-CoMFA

expression for the receptor binding and the remaining terms

(log DF) describe disposition function. Cell-based QSAR was

successfully used to study the antifilarial activities of antimycin

analogues61. Compared to the models of traditional CoMFA

method, DF was a necessary part to ensure reliably predictive

abilities. Disposition is a function to describe the distribution

way of the molecular inside the cell. The advantage of cell-

based QSAR is more actually to describe the distribution of

drug molecules inside the cells, which revises the binding

affinity. Although cell-based QSAR method is not fully mature,

it is still an essential direction for the innovation of QSAR.

In this paper, multi-scale QSAR is classified into three

scales, which involves six methods. Atom-based QSAR belongs

to micro-scale simulation. Fragment-based QSAR and small

molecular-based QSAR are classed as mesoscopic-scale

simulation. Macroscopic-scale simulation includes macromole-

cule-based QSAR, multi-target-based QSAR and cell-based

QSAR. The history of multi-scale QSAR is illustrated in Fig. 2.

2D-QSAR methods are known as one of the most mature

QSAR methods, including almost all scales of QSAR. If QSAR

model can be established by integrated application of multi-

scales descriptors, a better prediction results will be obtained.

3D-QSAR method is to simulate molecules in three-dimen-

sional space and mainly used in microscale and mesoscopic

scale currently. Although the application of 3D-QSAR is not

widespread, it may exert positive influence over future research

in the macroscopic scale.

In micro and mesoscopic scales, the application of mole-

cular simulation method provides more intuitive mode to study

molecular structure and biological activity. However, in macro-

scopic scales, statistical calculation method can make research

more convenient. Nowadays, a QSAR study with the combi-

nation of both approaches has become the new direction of

current research.

Currently, QSAR plays a vital role in the development of

pharmacy, materials science and agronomy. Multi-scale QSAR

has become a trend to the development of QSAR, which will

continue to meet the trend of drug development. Due to

technical limitations, the study of macromolecular scales is

not yet applied to 3D-QSAR studies, which also limits the

widespread application of QSAR technology to some extent.

When macromolecule can be calculated at macroscopic scale

by 3D-QSAR, the third leap of QSAR will be reached.
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