


ASIAN JOURNAL OF CHEMISTRY

A Green Approach for the Synthesis of 1-Methyl-2-(alkylthio)-1H-benzimidazoles

S. Srinivas Rao*, Ch. Venkata Ramana Reddy and P.K. Dubey

Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad College of Engineering, Kukatpally, Hyderabad-500 085, India

*Corresponding author: E-mail: seenu604@gmail.com; cnu604@gmail.com

Received: 24 September 2013;

Accepted: 13 December 2013;

Published online: 1 September 2014;

AJC-15839

A green approach for the synthesis of 1-methyl-2-(alkylthio)-1H-benzimidazoles 6 (R¹= CH₃, C₂H₅, CH₂Ph) under, different conditions has been developed from N-methyl-2-mercaptobenzimidazole (*i.e.* CH₃) 5 by reaction with an alkylating agent by physical grinding or by using green solvent like PEG-600 or by using micro-wave irradiation technique.

Keywords: Green synthesis, Grinding, Microwave, N-methyl-2-chlorobenzimidazole, Benzimidazole, N-alkyl-2-mercaptobenzimidazole.

INTRODUCTION

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest¹. Benzimidazoles are an important class of bioactive molecules in the field of drugs and pharmaceuticals². 2-Mercaptobenzimidazole derivatives having substitution at either the nitrogen or sulfur are reported to exhibit a broad spectrum of biological activity³⁻⁸.

Lee and Kim⁹ reported that benzimidazol-2-thione on treatment with alkyl halides in the presence of sodium naphthalenide in tetrahydrofuran at room temperature under an atmosphere of nitrogen afforded 1-alkyl-2-mercaptobenzimidazoles in 88-93 % yield. Stanovnik *et al.* ¹⁰ reported that selective alkylation of some compounds containing both SH and NH groups took place to give first the S-alkyl and subsequently the S,N-dialkyl derivatives. Using this strategy and in continuation of our earlier studies ¹¹⁻¹³, on the preparation of new derivatives of benzimidazole thiol, herein we report green syntheses of N-methyl-2-alkylthiobenzimidazoles.

EXPERIMENTAL

Melting points were determined in open capillaries in sulfuric acid bath and are uncorrected. IR Spectra were recorded with Jasca FT-IR 5300. ¹H NMR and spectra were recorded in CDCl₃/DMSO using Varian 400-MHz instrument. Mass spectra were recorded on an Agilent LC-MS instrument giving only M⁺ values in Q + 1 mode. Thin-layer chromatography (TLC) analyses were carried out on glass plates coated with silica gel GF-254 and visualization was achieved using iodine vapours or UV lamp. Experiments under microwave

irradiation were carried out by using the commercially available CEM Discover Microwave Reactor.

Preparation of compound 6 from 5

- (i) Physical grinding method: A mixture of 5 (10 mM), alkylating agent (10 mM) and K_2CO_3 (2.6 g, 10 mM) was ground together for about 10-15 min in a mortar with a pestle at room temperature to obtain a homogeneous mixture. The completion of the reaction was monitored by TLC on silica gel-G plates using authentic samples of the starting material and the target compounds as references. The mixture was then treated with ice-cold water (30-40 mL). The separated solid was filtered, washed with water (2 × 10 mL) and dried to obtain crude 6a-c. Recrystallization of the crude product from ethyl acetate gave pure 6a-c. IR, 1 H NMR and LC-MS spectra for the compounds 6a-c were found to be in agreement with the structures assigned to them. Yields are shown in Table-1.
- (ii) In PEG-600: A mixture of 5 (10 mM), alkylating agent (10 mM) and PEG-600 (20 mL) was heated on a steam-bath at 100 °C for 3 h. At the end of this period, the mixture was cooled to room temperature and poured into ice-cold water (50 mL). The separated solid was filtered, washed with water (2 \times 10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure 6a-c, identical with the same products obtained above. Yields are shown in Table-1.
- (iii) Under Microwave condition: A mixture of 5 (10 mM) and alkylating agent (10 mM) was taken in a 10 mL CEM-reaction tube sealed by rubber stopper and subjected to microwave irradiation for 2 min in a commercial micro-wave reactor. After that, the tube was cooled and the completion of reaction was checked by TLC. Then the reaction mixture was

5996 Rao et al. Asian J. Chem.

TABLE -1 PREPARATION OF 6 FROM 5 UNDER DIFFERENT GREEN CONDITIONS												
S.No.		Reagent	Product	Physical grinding			Green solvent			Microwave irradiation		
	SM			PEG-600			PEG-600			PEG-600		
5.110.	SIVI			Time	Temp	Yield*	Time	Temp	Yield*	Time	Temp	Yield*
				(Min)	(°C)	(%)	(Min)	(°C)	(%)	(Min)	(°C)	(%)
1.	1	DMS	6a	10-15	RT	88	180	100	69	2	RT / 450 W	89
	2	DES	6b	10-15	RT	86	180	100	73	2	RT / 450 W	87
	3	PhCH ₂ Cl	6c	10-15	RT	82	180	100	64	2	RT / 450 W	85

m.p. of **6a:** 218-23 $^{\circ}$ C (Lit.^(9,10) m.p. 222-27 $^{\circ}$ C) *Yield refers to isolated crude product only; RT: Room temperature m.p. of **6b:** 194-98 $^{\circ}$ C (Lit.^(9,10) m.p. 197-99 $^{\circ}$ C), m.p. of **6c:** 169-73 $^{\circ}$ C (Lit.^(9,10) m.p. 166-69 $^{\circ}$ C)

poured into ice-cold water (50 mL). The separated solid was filtered, washed with water (2×10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure **6a-c**, identical with the same products obtained above. Yields are shown in Table-1.

RESULTS AND DISCUSSION

Condensation of *o*-phenylenediamine (1) with urea by dry fusion of reactants at 130 °C gives the known benzimidazole-2-one (2) which on treatment with SOCl₂, in the presence of catalytic amount of phenol, yields the previously reported¹¹ 2-chlorobenzimidazole 3. The latter on alkylation with dimethyl sulfate in the presence of K₂CO₃ in CH₃CN medium using tetra-*n*-butylammonium bromide (TBAB) as phase transfer catalyst at room temperature for 3 h gave the previously reported¹² N-methyl-2-chlorobenzimidazole (4). Reaction of N-methyl-2-chlorobenzimidazole with thiourea in methanol under reflux for 3 h gave N-methyl-2-mercaptobenzimidazole (*i.e.*, 5, R = CH₃) (Scheme-I).

Reaction of compound **5**, independently, with each of dimethyl sulphate (DMS), diethyl sulphate (DES) and benzyl chloride (PhCH₂Cl) in the presence of K_2CO_3 , by a simple physical grinding of the reaction mixture in a mortar with a pestle under solvent-free conditions for 10-15 min at room temperature, followed by processing, gave respectively 1-methyl-2-methylthiobenzimi-dazole (**6a**, *i.e.*, $R = CH_3$), 1-ethyl-2-methylthiobenzimidazole (**6b**, *i.e.*, $R = C_2H_5$), 1-benzyl-2-methylthiobenzimidazole (**6c**, *i.e.*, $R = PhCH_2$), as the products identical with the ones reported in the earlier methods^{9,10} in all respects (m.p. m.m.p. and co-tlc analysis).

The reaction was also carried out in PEG-600 as the green solvent. Thus, heating a mixture of **5** with an alkylating agent in PEG-600 for 3 h without the use of any added base, followed by simple processing, gave respectively **6a** (*i.e.*, **6**, R = CH₃), **6b** (*i.e.*, **6**, R = CH₂CH₃) and **6c** (*i.e.*, **6**, R = CH₂Ph) identical with the same products obtained above (**Scheme-I**).

Compound **6** could also be prepared by an alternative, green method. Thus, **5** with an alkylating agent and K_2CO_3 as a base under microwave irradiation at RT conditions for 2 min and subsequent processing, gave respectively **6a** (*i.e.*, **6**, R = CH₃), **6b** (*i.e.*, **6**, R = CH₂CH₃), **6c** (*i.e.*, **6**, R = CH₂Ph) identical with the products obtained above (**Scheme-I**).

Conclusion

In conclusion, we have developed a green approach for the synthesis of 1-methyl-2-(alkylthio)-1*H*-benzimidazoles under different conditions.

ACKNOWLEDGEMENTS

The authors are indebted to the authorities of Jawaharlal Nehru Technological University Hyderabad India for providing facilities.

REFERENCES

- (a) G.L. Gravatt, B.C. Baguley, W.R. Wilson and W.A. Denny, *J. Med. Chem.*, 37, 4338 (1994); (b) J.S. Kim, B. Gatto, C. Yu, A. Liu, L.F. Liu and E.J. La Voie, *J. Med. Chem.*, 39, 992 (1996); (c) T. Roth, M.L. Morningstar, P.L. Boyer, S.H. Hughes, R.W. Buckheit and C.J. Michejda, *J. Med. Chem.*, 40, 4199 (1997); (d) D.A. Horton, G.T. Bourne and M.L. Smythe, *Chem. Rev.*, 103, 893 (2003).
- (a) G.L. Gravatt, B.C. Baguley, W.R. Wilson and W.A. Denny, *J. Med. Chem.*, 37, 4338 (1994); (b) B. Jayasankara and K.M.L. Rai, *ARKIVOC*, 75 (2008); (c) T. Roth, M.L. Morningstar, P.L. Boyer, S.H. Hughes, R.W. Buckheit and C.J. Michejda, *J. Med. Chem.*, 40, 4199 (1997).
- H. Hasegawa, N. Tsuda and M. Hasoya, Japanese Patent 198 (1974); *Chem. Abstr.*, 156308 (1975).
- G. Rovnyak, V.L. Narayana, R.D. Haugwitz and C.M. Cimarusti, US Patent 1973014; Chem. Abstr., 105596 (1974).

- 5. S.C. Bell and P.H. Wei, *J. Med. Chem.*, **19**, 524 (1976).
- 6. D.R. Graber, R.A. Morge and J.C. Sih, *J. Org. Chem.*, **52**, 4620 (1987).
- N.I. Korotkikh, G.F. Raenko and O.P. Shvaika, Chem. Heterocycl. Comp., 31, 359 (1995).
- N.I. Korotkikh, A.F. Aslanov and G.F. Raenko, *Russ. J. Org. Chem.*, 31, 721 (1995).
- 9. T.R. Lee and K. Kim, J. Heterocycl. Chem., 26, 747 (1989).
- 10. B. Stanovnik, M. Tisler, A. Hribar, G.B. Barlin and D.J. Brown, *Aust. J. Chem.*, **34**, 1729 (1981).
- P.K. Dubey, A. Naidu and P.V.V. Reddy, *Indian J. Chem.*, 47B, 1443 (2008).
- 12. P.K. Kumar and P.K. Dubey, Asian J. Chem., 24, 3249 (2012).
- S.S. Rao, P.K. Dubey and Y.B. Kumari, *Indian J. Chem.*, 52B, 1210 (2013).