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INTRODUCTION

Statics problems of antiplane shear loading were studied
in the past of several decades1-3. Dynamic problem is an impor-
tant research field in modern fracture mechanics. Due to the
interaction of the stress waves under complex dynamic loading
cases, the theory of dynamic fracture mechanics is still inno-
vated and developed4. However, many engineering structures
are under the conditions of dynamic loadings and the static
theory cannot effectually resolve a series of dynamic queries,
so it is indispensable to study the fracture dynamics problems5-8.
In view of the complexity in mathematics for dynamic fracture
of the edge crack and nonhomogeneous propagation crack
problems, both numerical solutions and half analytical solu-
tions are obtained by those literatures9-13, moreover analytical
solutions are obtained much less14-16. Therefore, it is necessary
to study active propagation problem concerning mode III semi-
infinite crack. Universal expressions of solutions are given by
means of the theory of complex functions in this paper. The
problems studied can be easily transformed into a Riemann-
Hilbert problem using Muskhelishvili’s method17,18. The objec-
tive of this paper is to show obtaining expediently analytical
solutions through the self-similar functions under the action
of moving increasing loads.
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an orthotropic anisotropic body, let the Cartesian co-ordinates
be coincident with the axes of elastic symmetry. The problems
considered are confined in the antiplane. The antiplane
equation of motion for an orthotropic anisotropic body is given
by1-4,6,7:
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where C44, C55 are the elastic constants, ρ is the mass density
and w is the displacement component4-7,15,16,19,20 along z.

Using Atkinson transform [19-20, 15-16 ], it is found that

yTtx +η−=ξ (2)

where η is to be understood as a complex variable and T is a
function of η.

A solution of equation of motion can be written as:
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where the integral is the real part of η-axis.
Now putting eqn. 3 into 1, the following representation

must exist:

0TCC 22
4455 =ρη−+ (4)

Eqn. 1 will become identical equation, hence )(ξφ  is a
discretionary function to be determined from the boundary
conditions.
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Postulating that eqn. 4 has two complex roots, then we
only take the imaginary part with the positive sign, i.e., positive
square root. Here exists4,15,16,19,20:
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At y = 0, one attains the universal conclusions4,15,16,19:
When functions Lw is homogeneous, there results
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n, – m – n and 0 represent the (m + n)th order derivative, the
(m + n)th order integral and function’s self, respectively. The
coefficients m, n will be called the indices of self-similarity4,

15,16,19,20.
With the help of the notation introduced, all the general

expressions can be rewritten in the following format:
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where: τ = x/t, f(τ) is self-similar functions. The values of T(τ)
can be ascertained from eqn. 5. Indicated that T(τ) in the area
of the subsonic speeds is purely imaginary for the considered
values. Thus, elastodynamics problems for an orthotropic
anisotropic body can be translated into the sole unknown func-
tion problems of f(τ) meeting the boundary-value conditions.
In the general case, this is Riemann-Hilbert problem in the
theory of complex functions for the simplest case, which is
the Keldysh-Sedov or Dirichlet problem17,18.

Dynamic semi-infinite crack propagation of ortho-

tropic solids under antiplane shear loading: Assume at the
initial moment t = 0, a crack begins to nucleate from an
infinitesimally small micro-crack under the action of shear
loads P located at the point of infinity, propagating with
constant velocity V (for the subsonic speeds) in the positive
direction of x-axis. The schematic of dynamic semi-infinite
crack extension of orthotropic solids under anti-plane shear
loading is indicated in Fig. 1. The contour is symmetry both
in geometry and mechanics with respect to x-axis, but it is the
asymmetry with respect to y-axis in virtue of crack semi-
infinite extension. The crack located in the zone of y = 0, 0
< x < Vt; moreover closed force P acts on this segment, whose
magnitude is unknown, unascertained. The strength denotes
shear stress τ lying in the rear segment of the crack tip. When
the crack runs at high speed, its dimension must relate to
variables x and t, then the crack edges subjected to loads also
have relation to variables x and t.

tV

y

x

Pyz −=τ

Pyz −=τ

Fig. 1. Schematic diagram of dynamic semi-infinite crack extension of
orthotropic solids under antiplane shear loading

Rudimental solution of dynamic extension for semi-

infinite crack problem: Postulated at the initial moment t =
0, a micro-crack suddenly occurs at an orthotropic anisotropic
body, the Cartesian co-ordinate axes are presented which
accords with the axes of elastic symmetry of the body and the
motion of the crack is restricted in the x-y-plane at constant
velocity V in the positive direction of x-axis. The correlative
following boundary will be depicted as:
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Introducing the variable τ = x/t. In terms of eqn. 8 and
tδ(x) = δ(x/t) in the theory of generalized functions21-23, the
mentioned-above boundary conditions can be translated into
the undermentioned boundary value queries:
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In terms of eqn. 8 and the previous conditions, the unique
unbeknown function f(τ) must have the form:

)](,[(g)(f 3 τξτ=τ (11)

Then the problem considered can became down to
Keldysh-Sedov problem:

0)(mRe =τ , V>τ ; 0)(mIm =τ , V0 <τ< (12)

Considering synthetically dissymmetry and the conditions
of the infinite point of the plane corresponding to the origin of
coordinates of the physical plane as well as singularities of
the stress at the crack tip23-25 the rudimental solution of the
above problems can be obtained as follows:

4( ) g [(V ), ]ξ τ = − τ τ (13)

Afterwards applying eqns. 8 and 5, the stress, the dis-
placement and the stress intensity factor under the conditions
of semi-infinite crack expansion problem will be easily derived.

Solutions of frondose problems: In order to resolve effec-
tually fracture dynamics problems on an orthotropic anisotropic
body, solutions will be obtained under the action of variable
loads for mode III semi-infinite crack. In terms of the principle
of generalized functions, the unlike boundary condition
problems will be changed into Keldysh-Sedov mixed boundary
value problem using the measure of self-similar functions and
the corresponding solutions will be obtained.

Presumed at the initial moment t = 0, a micro-crack is
abruptly initiated and begins to move at constant velocity V
along the positive direction of x-axis. The crack surfaces are
subjected to standard point force Px2/t2, moving at a constant
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velocity β < V along the positive direction of x-axis. On the
half-plane at y = 0, the boundary conditions will be shown as
follows:
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Evidently the displacement will be homogeneous
functions, in which . Using τ = x/t and the theory of generalized
functions24,25 as well as eqns. 8 and 6, the first of eqn. 14 can
be rewritten:
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Deducting from the above formulae, the unique solution
of f(τ) must have this form:
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In the formula ξ(τ) has no singularity in the domain of 0
< τ < V, while T(τ) is purely imaginary for the subsonic speeds;
hence ξ(τ) must be purely real in the section of 0 < τ < V.
Thus, eqn. 16 becomes:

0)(mRe =τ , V>τ ; 0)(mIm =τ , V0 <τ< (17)

In terms of dissymmetry and the conditions of the infinite
point of the plane corresponding to the origin of coordinates
of the physical plane as well as singularities of the crack tip23,25

the unique solution of the Keldysh-Sedov problem 17 can be
obtained:

A
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where, A is an unknown constant.
Putting eqn. 18 into 16, one can gain:
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Substituting eqn. 19 into eqns. 15 and 5, at τ → β, constant
A will be ascertained:
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Afterwards eqns. 19 and 5 may be replaced into eqns. 6
and 8, at the surface y = 0, the stress τyz, the displacement w
and dynamic stress intensity factor K3(t) are obtained, respec-
tively:
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where: l = Vβ-β2. Its result is acquired by application of
formulas in the literature26.
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Known from eqn. 23, dynamic stress intensity factor K3(t)
decays slowly and has an obvious singularity owing to only
one variable t in the denominator and the rest units are all real
constants.

With all conditions holding the same as that discussed in
the previous example, the loads become Pt3/x2.The boundary
conditions will be as follows:
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Apparently the stress will be homogeneous functions in
which L = 1. According to eqns. 7 and 8 as well as the theory
of generalized functions21-23, the first of eqn. 24 can be rewritten
as:
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At x ≠ βt, the derivative of tδ(x-βt) is zero, therefore the
result will be obtained.

Deducting from the above formulae, the sole solution of
f(τ) must have this form:
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In the formula ξ(τ) has no singularity in the domain of 0
< τ < V, while T(τ) is purely imaginary for the subsonic speeds;
hence ξ(τ) must be purely real in the section of .Thus, eqn. 25
nduces:

0)(mRe =τ , V>τ ; 0)(mIm =τ , V0 <τ< (27)

In terms of asymmetry and the conditions of the infinite
point of the plane corresponding to the origin of coordinates
of the physical plane as well as singularities of the crack tip23-

25 the unique solution of the Keldysh-Sedov problem 27 can
be obtained:
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where, A is an unbeknown constant.
Replacing eqn. 28 into 26, we can gain:
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Putting eqn. 29 into 26, 5, at τ → β, constant A will be
ascertained:
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In an orthotropic isotropic body, the disturbance range of
elastic wave can be denoted by the circular region of radius
c1t and c2t, here c1 and c2 are the velocities of longitudinal and
transverse waves (c1 > c2) of the elastic body respectively. In
an orthotropic anisotropic body, the disturbance range of elastic
wave is not the circular area and can not exceed the threshold

value ρ= /CC 55d  (sonic velocity) of the elastic body. At

tCx d> , with 0)](TIm[ =τ , thus the stresses and the displa-

cements are zero, which coincide with the initial conditions;
and this narrates that at the surface y = 0, the disturbance of
elastic wave can not exceed Cdt .

Then putting eqns. 29 and 5 into eqns. 7 and 8, at the
surface τyz, the displacement w and dynamic stress intensity
factor K3(t) are obtained, respectively:
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The limit of the above formula remains with the shape of
0'∞, which should be translated into the type of ∞/∞, then its
result can be computed by means of L’Hospital theorem27.

In order to represent expediently, eqn. 29 can be rewritten
as:
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For the sake of conveniency, it is assumed that:
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Based on the above results, its relative constants can be
represented as: a = 0, b = V, c = -1, K = 4ac - b2 = V2.

Integrating eqn. 33, in the light of eqn. 8, one will obtain
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Known from eqn. 35, w0 will be acquired with three terms.
After separating denotation and using the essential formula26,
it has:
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Denominator in eqn. 37 contains this term 2/3X)( β−τ ,

so the computation is incapable of using directly integral
formulas, therefore integral format must translate into perfor-
mable integral26.

By variable substitution: τ1 = τ-β, putting it into eqn. 34,
one can be obtained:
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Known from eqn. 35: w0(τ)= w1
0(τ)+ w2

0(τ) + w3
0(τ). The

crack propagates along the x-axis, consequently w0(τ) com-
prising eqns. 36, 38 and 40 can be implemented in the definite
integral operation, one takes constant C = 0.

Now putting eqn. 36 into 7, the divisional displacement
w1 is:
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Applying essential formulas in Literature26, the follow-
ing representations are obtained.
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Eqns. 42, 43 and 44 are deduced by this relationship:

θ=τ 2sinV .
After putting eqns. 42, 43 and 44 into 41, the divisional

displacement w1 is obtained:
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Then replacing eqn. 38 into 7, the separated displacement
w2 is:
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The integral of the second term of eqn. 46 without coeffi-
cient can be rewritten as follows:
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Then inserting eqns. 47, 42 and 43 into 46, the zonal
displacement w2 is as follows:
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Putting eqn. 38  into 7, the divisional displacement w3 is:
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After substituting eqns. 42, 43 and 44 into 49, this repre-
sentation w3 is acquired:
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The displacement is the summation of subdistrict displace-
ment: w = w1 + w2 + w3. After the addition among eqns. 45, 48
and 50, the displacement w is obtained as follows:
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where: a = 0, b = V, c = -1, 22 Vbac4K −=−= , 
2

1 Va β−β= ,

β−= 2Vb1 , 1c −= , 2
111 bca4K −=  KV2 =−= .

Changeable law of dynamic stress intensity factor:

Analytical solutions need transforming into numerical solu-
tions according to the factual situation of concrete problems,
therefore variable law of dynamic stress intensity factor can
be displayed effectually. The corresponding parameters are
put into eqns. 23 and 32 to readily plot K3(t) as a function of
time t , respectively. The following constants28,29 postulated
are as follows:

GPa8C44 = , GPa16C55 = , 33 mN108.97.2 −××=ρ

1ms300V −= , N200P = , 1ms180 −=β

Known from eqn. 23, dynamic stress intensity factor K3(t)
reduces laggardly and trends to a constant finally and has appa-
rent singularity with the prolong of time, as shown in Fig. 2.
The relative numerical value relationship is depicted in Table-1.
This variable trend is similar to the outcome in literatures29-31,
consequently the result obtained is approved to be correct. In
the light of eqn. 32, dynamic stress intensity factor K3(t) gradu-
ally increase from zero, but its increasing current is slow and
even reach or exceed fracture toughness of this material, there-
fore, structural destruction will occur, as described in Fig. 3.
T Such an uptrend is homogeneous to the result in litera-
tures29,32-35, therefore, it is also right. The correlative numerical
value relation is indicated in Table-2.
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Fig. 2. Dynamic stress intensity factors K3(t) versus time t

TABLE-1 
CORRELATIVE NUMERICAL VALUES BETWEEN DYNAMIC 

STRESS INTENSITY FACTOR K3(t) versus TIME t 
t (ms) 2 4 6 8 10 

K3(t)×104/N·m-3/2 2.1535 1.5228 1.2433 1.0768 0.9631 
t (ms) 12 14 16 18 20 

K3(t)×104/N·m-3/2 0.8792 0.8140 0.7614 0.7178 0.6810 
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Fig. 3. Dynamic stress intensity factor K3 (t) versus time t

TABLE-2 
CORRELATIVE NUMERICAL VALUES BETWEEN DYNAMIC 

STRESS INTENSITY FACTOR K3(t) VERSUS TIME t 
t (ms) 2 4 6 8 10 

K3(t)×10-7/N·m-3/2 1.3591 1.9219 2.3538 2.7183 3.0388 
t (ms) 12 14 16 18 20 

K3(t)×10-5/N·m-3/2 3.3288 3.5955 3.8438 4.0771 4.2975 

 
Conclusion

Applying the relative expression: f(x, y, t) = tnf(x/t, y/t),
just n is an integer number; and then the problem investigated
will be facilely transformed into homogeneous functions of
zeroth dimension, i.e., homogeneous functions. All satisfying
this function relationship are solved by eqns. 6-8 according to
the modality of homogeneous functions corresponding to
variable τ. This approach is utilized not only in elastody-
namics4,6,7,14-16,20,21,36,37, but also in elastostatics18,24,25,38,39, so much
as in the else region39,40.

Introducing the measures of the self-similar functions is
capable of gaining analytical solution of active propagation
problems concerning mode III semi-infinite crack surfaces
subjected to motive increasing loads Px2/t2 and Pt3/x2, respec-
tively. This is referred to as the analogous class of dynamic
problem of the elasticity theory. The method of solution is
based exclusively on techniques of analytical-function theory
and is straightforward and concise. By making some observa-
tions regarding the solution of the mixed boundary-value
problem, this has fairly reduced the amount of the calculative
work needed to settle such a crack extension problem.
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