

Ni/TiO₂ Catalysts Supported with Al₂O₃ Over CO₂ Reforming[†]

H. SUN, Q.J. GONG, B.H. LV and J. HUANG*

Department of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi Province, P.R. China

*Corresponding author: Fax: +86 359 2090378; Tel: +86 359 2090394; E-mail: jianhuang3@126.com

AJC-15728

The 5 wt % Ni/TiO₂-Al₂O₃ xerogels catalyst was prepared by the sol-gel synthesis of titanium *n*-butoxide in methanol with nickel and aluminum. X-Ray diffraction, TG/DTA and SEM were used to characterize the function of addition aluminum to Ni/TiO₂ catalyst. The role of aluminum addition promotes the formation of large metallic Ni ensembles increase the dispersion of Ni, suppression of Ni/TiO₂ catalyst deactivation and carbon deposition.

Keywords: CO₂-reforming, Methane, Nickel catalysis, Aluminum, Carbon deposition.

INTRODUCTION

Carbon dioxide reforming is meaningful because it produces a more suitable H_2/CO ratio for the Fisher-Tropsch. However, this reaction has not been established industrial due to the serious catalyst deactivation. It is well known that many transition metal-based are good catalysts for the CO_2 reforming reaction, especially noble and Ni-based catalysts. Although noble metal catalysts show better performance than nickel, but the high cost of noble metals renders their application. Therefore, development of Ni-based catalysts with little or no carbon deposition is of great interesting to industrial application for CO_2 reforming.

Some researchers have stated that the addition of titanium improves the stability of these catalysts, especially inhibiting the carbon deposition. When a titanium-supported nickel was employed in catalytic CO_2 reforming, the catalyst showed a high initial activity but suffered instability based both on the poor reduced surface area and Ti_3O_5 was covering the active sites of Ni catalysts.

Zhang and Reller¹ showed that the larger metal particles stimulated the amorphous carbon deposition because of the ensemble result which was covering the active metal surface. So solid solution formation and decorating Ni crystallites with other oxides *etc*. are proved to be effective in the elimination of large Ni metal ensemble. For instance, the formation of NiAl₂O₄ results in the formation of small Ni crystallites which resist to carbon deposition^{2,3}. A number of articles reported that mobile oxygen on the surface of catalysts is related to the

carbon elimination^{4,5}. As a high temperature reation, it is required that the catalyst has good thermal stability. The formation of NiAl₂O₄ solid solution can improve the oxygen storage capacity, the redox property and the thermal resistance.

In this work, we reported on the study of CO_2 reforming over Ni/TiO₂-Al₂O₃ catalyst. It also reported an effect of adding aluminum to Ni/TiO₂ catalysts. The major function of an aluminum additive was to improve development of pore structure and inhibit Ti₃O₅ formation. The best effect in securing stability without sacrificing much activity was obtained when aluminum was used as a modifying additive. In this paper, the role of aluminum oxide as a promoter in Ni/TiO₂-Al₂O₃ is discussed.

EXPERIMENTAL

Preparation of catalyst: 5 wt % Ni/TiO₂-Al₂O₃ was prepared by sol-gel process from analytical-grade (Sinopharm Chemical Reagent Co., Ltd.). The precursors were Ni(NO₃)₂·6H₂O, Ti(BuO)₄ and Al(NO)₃·9H₂O. Methanol has been used as a solvent for precursor solution and hydrolyzate. The molar ratio of Ti/MeOH was at 0.12. Hydrolysis was catalyzed by HNO₃ with an acid/alkoxide ratio of 0.10 and hydrolysis ratio of 5.22. Appropriate amounts of Al(NO₃)₃·9H₂O were added into Ti(BuO)₄ and Ni(NO₃)₂·6H₂O solution in MeOH to make the gel solutions. Hydrolysis of the colloidal suspension was obtained by slowly dropping acid/alkoxide and at the same time stirring to keep the hydrolysis solution has been

*Presented at 2014 Global Conference on Polymer and Composite Materials (PCM2014) held on 27-29 May 2014, Ningbo, P.R. China

dropped into the colloidal suspension after 24 h. The gel was dried in air at 453 K for 10 h then calcined at 973 K for 10 h with a rate of 1 K/min from 298 K.

X-Ray powder diffraction patterns obtained by using Rigaku D/max 2250 diffraction equipment with CuK_{α} source at 40 kV and 100 mA. 2 θ angles ranged from 20-80 with a speed of 8 °/min. SEM image was obtained on a Philips XL-30 microscope operated at 15 kV. The thermal behaviour and carbon deposited on the catalysts were obtained by a Perkin Elmer. Pyris Diamond TG/DTA equipment. The temperature was increased to 1023 K from 303 K at a rate of 5 K/min.

Performance measurement of catalyst: Catalytic performance measurement of CO₂ reforming was conducted under atmospheric pressure with a tubular fixed-bed quartz reaction (5.6 mm i.d. 255 mm length). The reaction gases consisted of CO₂, CH₄ and N₂ with the ratio of 1:1:1.8 at a GHSV of 942000 cm³ h⁻¹ g⁻¹. The catalyst of 100 mg with the particle size of 60-80 meshes diluted with 0.5 g quartz sand (45-55 Mesh). The catalyst was reduced in-suit at 973 K for 2 h with a feed composition of H₂/N₂ = 1:2. The analyses of the tailgas were carried out on a Haixin GC-950 gas chromatograph equipped with a TCD detector.

RESULTS AND DISCUSSION

Activity and stability of catalyst: The characteristic of catalytic was tested at 973 K with a feed gas ratio CH₄/CO₂ of one. Table-1 listed that the Ni/TiO2-Al2O3 catalyst illustrated a high response rate initially and exhibited continuous higher stability during the 10 h. On the contrary, the Ni/TiO₂ catalyst showed low activity and a rapid deactivation comparable to the Ni/TiO₂-Al₂O₃ during the 10 h stream response. The significantly effect of aluminum improved the stability of catalytic. Table-2 showed the time-dependent reaction rate of CH₄ over 5 wt % Ni/TiO₂-Al₂O₃ catalyst with different Al₂O₃ loading. As Al₂O₃ content increased, the activity improved accordingly. It is observed that the reaction rate of the catalyst with 25 wt % Al_2O_3 appears to be higher than that of 35 wt % Al_2O_3 with time on stream. However, at the highest Al₂O₃ loading (75 wt %), it showed the lowest reaction rate on stream. Overall evaluation of the effect of Al₂O₃ addition is that proper content of Al_2O_3 can improve the activity, but excessive Al_2O_3 can easily cause catalyst deactivation. It was 50 wt % Al₂O₃ loading that provides well stability.

TABLE-1 TIME-DEPENDENT REACTION RATE OF CH₄ OVER 5 wt % Ni/TiO₂ AND 5 wt % Ni/TiO₂-Al₂O₃ CATALYSTS								
Catalyst	Time (h)							
	0	2	4	6	8			
Ni/TiO ₂	83.0	56.0	42.0	38.0	32.0			
Ni/TiO ₂ /Al ₂ O ₃	125.0	129.0	128.0	129.0	132.0			
Raction condition: temperature 973 K, p = 1 atm. GHSV = 9,2000 cm ³ $h^{-1} g^{-1} CH_4/CO_2 = 1$.								

Role of aluminum in Ni/TiO₂: Aluminum addition to Ni/TiO₂-Al₂O₃ over CO₂ reforming was the suppression of catalyst deactivation and carbon deposition. The deactivation of Ni-based catalysts can be described to carbon deposition and nickel sintering. X-Ray powder diffraction patterns of Ni/TiO₂-

TABLE-2 TIME-DEPENDENT REACTION RATE OF CH 4 OVER 5 wt %									
Ni/TiO ₂ -Al ₂ O ₃ CATALYST WITH DIFFERENT Al ₂ O ₃									
Cat	Time (h)								
Cat.	0	2	4	6	8				
Ni/TiO ₂ /25 wt % Al ₂ O ₃	182.0	180.0	179.0	177.0	176.0				
Ni/TiO ₂ /35 wt % Al ₂ O ₃	146.0	142.0	143.0	144.0	145.0				
Ni/TiO ₂ /50 wt % Al ₂ O ₃	201.0	201.0	201.0	200.0	200.0				
Ni/TiO ₂ /75 wt % Al ₂ O ₃	118.0	118.0	118.0	119.0	119.0				
Reaction condition: temperature 973 K, P = 1 atm, GHSV = 942000 cm ³ h ⁻¹ g ⁻¹ , CH ₄ /CO ₂ = 1.									

Al₂O₃ catalyst in fresh, reduced and post-reaction are presented in Fig. 1. It showed that no nickel reflection occurred on fresh Ni catalyst reduced at 973 K (Fig. 1). It indicated that the interaction between NiO and Al₂O₃ was strong. There is still no pure NiO observed and nickel is present in the formal of NiAl₂O₄. The XRD analyses of the fresh, reduced and postreaction Ni/TiO₂-Al₂O₃ catalysts are presented will generate more active sites, attributing to its high activity. In this research, it can been seen that the lower catalytic activities of Ni/TiO₂ catalyst is possibly due to the blockage of the active sites. It suggests that the pores of this catalyst be blocked by the Ti₃O₅, which could prevent the contact between the reactants and the active sites. Some researchers have reported the coverage of active sites by Ti₃O₅ was the main cause of Ni/TiO₂ deactivation. The addition of aluminum can inhibit the reduction of TiO₂. It was the main reason that Ni/TiO₂-Al₂O₃ could perform well much longer with a much better action than Ni/TiO2 catalyst.

Fig. 1. X-Ray diffraction patterns for 5 wt % Ni/TiO₂-Al₂O₃ catalyst. (a) Calcinaed at 453 K for 10 h, (b) Calcinaed at 773 K for 10 h, (c) Reduced at 973 for 2 h and (d) after 120 h reaction at 973 K. ▲: Anatase; ◆: Rutile; ○: Al₂O₃ or NiAl₂O₄. SO: SiO

The sample of Ni/TiO₂-Al₂O₃ catalyst remained X-ray amorphous up to 453 K. It can be seen that a pure anatase phase was obtained at 773 K, it would be desirable to have a single-phase support for establishing a structure-reactivity relationship in catalytic applications. It can be seen that rutile TiO₂ began to form at 973 K. It was reported that, brookite, anatase and rutile can coexist in the temperatures from 673-973 K⁶ and TiO₂ transforms to rutile between 903 and 973 K⁷. These results are in agreement with what the XRD presents. Rutiles was more stable and final phase of titania and anatase transforms into rutile at 973 K. The extension of the coexistence of rutile and anatase may be due to the integration of aluminum. A existence of anatase may also contribute to the higher performance.

It can been seen that no nickel peaks in fresh catalyst due to the interaction between the metal and support Al₂O₃ in XRD patterns. Phase transformation occurred on Al₂O₃ supported Ni catalyst during calcination to form nickel aluminate NiAl₂O₄ which is difficult to reduce to metallic nickel at 973 K. Assist with more porous structure has lower nickel particle size. The metallic Ni in the reduced samples preferentially forms small crystallites and the dispersion of Ni increases by adding Al₂O₃. The interaction among components can affect the distribution of components and the structure of the catalyst and in addition, thus affect the activity of the catalyst. Several research groups⁸ have reported that the migration of Ni from the bulk to the surface of the catalyst may migrate to the surface during the reaction. For the XRD result (Fig. 1) Al₂O₃ can react with the reduced NiO to form NiAl₂O₄. This process may promote the migration of Ni. Therefore the activity of the sample with 50 wt % Al₂O₃ increased more quickly than the samples with different content of Al₂O₃ (Table-2).

Tang *et al.*⁹ reported that NiAl₂O₄ can form after calcinations at 973 K which is easier to reduce than NiTiO₃. Several researchers have found that higher calcination temperatures increase the metal-support interaction and the formation of nickel aluminum resulting in greater difficulty in reduction^{3,10,11}. It will affect the nickel dispersion and carbon deposition. Chen and Ren³ showed that carbon deposition is markedly suppressed if NiAl₂O₄ is made. The strong interaction of the Ni-O bond in NiAl₂O₄ results, in the formation of small Ni crystallites on the catalyst surface, which are relatively stable toward sintering and carbon deposition¹.

It is known that nickel crystallites are the active sites for CO_2 reforming. XRD results have shown that NiAl₂O₄ was the main phase of nickel in fresh catalyst Ni/TiO₂-Al₂O₃. The catalyst showed higher activity and carbon resistance from nickel crystallite. Chen and Ren³ also showed that NiAl₂O₄ may be as the active site in CO₂ reforming. Hence, it is deduced that the reduced NiAl₂O₄ may be an active site for this reaction exhibiting different catalytic and stability. It suggested that the calcined NiAl₂O₄ spinel phase made not active in the reforming reaction but its reduced form could lead to a significant increase in activity and stability. It is deduced that the higher activity of Ni/TiO₂-Al₂O₃ in this research was probably due to the synergetic effect of the reduced NiAl₂O₄ and surface nickel particles.

To the surface of the catalysts and blocked the accessibility of reacting molecules to active sites. The deactivation of Ni/ TiO₂-Al₂O₃ catalysts can also be attributed to the sintering of the active phase. The result drawn from the XRD characterizations in the catalyst indicate that there is no NiO present in fresh catalyst. XRD measurements give insight into the structural changes of Ni particles and deposited carbon after the reaction. It can be seen In Fig. 1, pattern (d), shows the size Ni crystalline.The nickel crystallite phase peak on Ni/ TiO₂-Al₂O₃ appeared after 120 h.

Characterization of carbon deposits: TG/DTA profiles of carbon deposits on the Ni/TiO₂-Al₂O₃ catalyst after 10 h carbon are illustrated in Fig. 2. The TG mode shows a weight drop from the starting point to 542 K, it was the evaporation of moistures, methanol solvent and BuOH generated during hydrolysis and the decomposition of nitrate. The steep weight increase indicates nickel oxidized during 542-738 K. Then the weight gradually decreased until leveling off at 973 K and then shows no further weight loss (Fig. 2). The oxidation of carbonaceous species starts at 807 K, showing a maximum at 834 K, which is in agreement with the formation of filamentous carbon species, this conforms to the result of XRD. There are two types of carbon, deactivating (amorphous carbon) and non-deactivating (graphite) were found^{3,12}. The morphology of graphitic carbon is that of carbon filaments. Chen and Ren³ reported that the filamentous carbon with a hollow inner channel would form on the surface of 10 wt % Ni/6-Al₂O₃ catalysts. They did not lose their activity in tests for as long as 120 h.

Fig. 2. TG/DTA profiles of 5 wt % Ni/TiO₂-Al₂O₃ catalyst after 10 h reaction. Reaction condition: temperature 974 K, P = 1 atm, CH₄/ $CO_2 = 1$ GHSV = 942000 cm³ h⁻¹ g⁻¹

Fig. 3 illustrates the SEM micrograph of the Ni/TiO₂-Al₂O₃ catalyst showing the well-surface area and mesoporous.

Fig. 3. SEM micrograph of the Ni/TiO₂-Al₂O₃ catalyst illustrating wellsurface area and mesoporous

Carbon deposition on Ni/TiO₂-Al₂O₃ catalyst is mainly graphitic as shown in XRD. It can be seen that the peak of graphitic carbon appears in Ni/TiO₂-Al₂O₃ after CO₂ reforming for 120 h. The foregoing discussions have shown that graphitic carbon is more active in the CO₂ reforming, probably due to its close contact with nickel particles. Therefore, Ni/TiO₂-Al₂O₃ catalyst showed higher stability in this reaction, because of its more active carbon species. This behaviour may be attributed to the formation of NiAl₂O₄. It was reported that NiAl₂O₄ solid solution could minimize the Ni particle size to suppress the carbon formation³. It is expected that the Al₂O₃ addition to Ni/TiO₂ can modify the Ni ensembles environment by the Ni-Al alloy formation. Hence, the Al₂O₃ addition effects the Ni/TiO₂ catalyst to suppress the carbon deposition during CO₂ reforming. Although the amount of carbon deposition on the Ni/TiO₂-Al₂O₃ catalyst was appeared, the catalyst kept high activity with reaction rate as shown in Table-1. The amount of carbon deposition was not always to the catalyst deactivation. Chen and Ren³ reported that the carbon deposition on the $NiAl_2O_4$ spinel was markedly suppressed during the CO_2 reforming. Their results agreed with our results during the reaction time till 120 h in the carbon deposition on the Ni/ TiO₂-Al₂O₃ catalyst. Hence, the deactivation of Ni/TiO₂-Al₂O₃ catalyst has been ascribed to Ni sintering. The presence of a nickel phase in the XRD pattern of used catalyst after 120 h reaction indicates that nickel was sintered after 120 h on stream in the CO₂ reforming. The results from TG/DTA and XRD support the same conclusion that the Ni/TiO₂-Al₂O₃ catalyst deactivation is mainly due to the Ni sintering rather than to carbon deposition in the CO₂ reforming.

Conclusion

The Ni-based catalysts modified by Al₂O₃ are efficient for the CO₂ reforming, despite the fact that a significant amount of carbon is formed during the reaction over Ni/TiO₂-Al₂O₃. This catalyst exhibited high activity and stability as compared with Ni/TiO₂. When Al₂O₃ is added to the support, the formation of NiAl₂O₄ depressed the carbon deposition over Ni/TiO₂-Al₂O₃. It resulted in the catalyst exhibiting stable activity during the CO_2 reforming. On the other hand, the presence of Ni aluminate spine decreases the carbon deposition in the Ni/ TiO₂-Al₂O₃ catalysts. The results suggest that the deactivation of Ni/TiO₂-Al₂O₃ catalyst have been ascribed to Ni sintering in the catalysts will be investigated in future.

ACKNOWLEDGEMENTS

The authors gratefully acknowledged the Fundamental Project of Shanxi Province for Study Abroad (2013-105) and the Natural Science Fund of Shanxi Province (2013011009-3) as well as Fund of Yuncheng University (CY-2012017, YQ-2013010).

REFERENCES

- 1. Y. Zhang and A. Reller, *Chem. Commun.*, **6**, 606 (2002).
- 2. A.M. Gadalla and B. Bower, Chem. Eng. Sci., 43, 3049 (1988).
- 3. Y.G. Chen and J. Ren, Catal. Lett., 29, 39 (1994).
- T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, *Appl. Catal. A*, 183, 273 (1999).
- 5. Z.L. Zhang and X.E. Verykios, Appl. Catal. A, 138, 109 (1996).
- 6. A. Vejux and P. Courtine, J. Solid State Chem., 23, 93 (1978).
- 7. R.D. Shannon, J. Appl. Phys., 35, 3414 (1964).
- T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, *Appl. Catal. A*, 183, 273 (1999).
- S. Tang, L. Ji, J. Lin, H.C. Zeng, K.L. Tan and K. Li, J. Catal., 194, 424 (2000).
- 10. S. Wang and G.Q. Lu, Ind. Eng. Chem. Res., 36, 5103 (1997).
- 11. M.C.J. Bradford and M. Albert Vannice, Catal. Today, 50, 87 (1999).
- 12. S.-C. Ho and T.-C. Chou, Ind. Eng. Chem. Res., 34, 2279 (1995).