
ASIAN JOURNAL OF CHEMISTRYASIAN JOURNAL OF CHEMISTRY
http://dx.doi.org/10.14233/ajchem.2014.18217

INTRODUCTION

Nowadays, zeolites and related microporous materials

have been highly used in the petroleum industry due to their

excellent specificities1. A better understanding of the relation-

ships between the synthetic factors and the resulting structures

is very important for rationalizing the synthesis of the target

zeolitic materials. However, the synthetic processes of these

materials are very complex and governed by a number of factors.

Therefore, it is a challenge task to exploit the relationships.

Data mining and machine learning technologies have been

widely used to speed up the discovery and modeling the

relationship2,3. More recently, many research works have been

reported on aluminophosphate synthesis database4-8. These

works have contributed to the understanding of the synthesis

mechanism. Li et al.4 used support vector machine (SVM) to

predict (6,12)-ring-containing microporous aluminophos-

phates and gave the best combination of synthetic factors4.

Partial least squares and logistic discrimination (PLS-LD)

methods were presented to predict the generation of micro-

porous aluminophosphate aluminophosphate4-5
5. Besides, four

re-sampling methods were proposed to deal with the problem

of class imbalance. For the sake of examining the significant

synthetic factors affecting the formation of (6,12)-ring-containing

structure, an integrated feature selection method was proposed

based on random subspace method in our previous work8.
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In this paper, a novel framework is proposed to predict

the desired target on imbalance data set of aluminophosphates

database. Different to most existing predictive models as well

as the above mentioned methods, intra-class distribution of

the majority class is first investigated adequately by affinity

propagation (AP) clustering. Then, based on the clustering

results, Q times n-fold cross-validation (CV) is applied to assess

the predictive performance. More specifically, several classical

classifiers are used to measure the validity of proposed

framework. The results are judged on the numerical prediction

of (6,12)-ring-containing structure.

EXPERIMENTAL

The experimental data set is from aluminophosphate

database and (6,12)-rings structure is used as predicted target9.

In particular, twenty one synthetic factors and 1279 items are

selected as experimental data set. In this data set, 398 samples

that can produce the (6,12)-ring-containing structure are called

positive samples. The other 881 samples are the negative

samples.

Method: Affinity propagation clustering algorithm has

gained increasingly popularity in recent years as an efficient

and fast clustering algorithm10. Compared with classical k-

means, k-centres and Fuzzy C-Means clustering methods,

affinity propagation algorithm needs not to predefine the

number of clusters and to initial the exemplars and has fast
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computation. Given a data set, affinity propagation algorithm

can be described as:

Algorithm (affinity propagation clustering):

Begin initialize tmax, t ← 0, a(i, k) ← 0, i, k = 1, ... n.

Compute the similarity matrix s
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Performance measure: The performance of a prediction

algorithm is assessed by F-measure5, which is an integrated

measure and considers both two classes accuracy simulta-

neously. It is a very effective metric for measuring imbalance

data set.

RESULTS AND DISCUSSION

We observed that the data set is obviously unbalanced.

To better handle this problem, this paper proposes a novel

framework to improve the predictive results, which considers

the data distribution of the majority class. It can complete the

predictive task by establishing multiple classifiers such that

each classifier has its particular discriminant ability. The

framework can be depicted as: (1) Cluster majority class into

C subsets by affinity propagation clustering algorithm. (2)

Classify the each subset with the minority class using Q times

n-fold CV. (3) Average the C results as the final predictive

results.

Parameters setting: The negative samples are divided

four subsets by using affinity propagation algorithm. Accor-

dingly, C is set to 4. Considering the sizes of subsets and

positive samples, we set Q to 10 and n = 3, 5, 7, 10, respectively.

Moreover, SVM with Gaussian kernel, Adaboost, K-Nearest

Neighbor algorithm (KNN), Back Propagation network (BP),

Classification and Regression Tree (Cart), Iterative Dichoto-

mizer-3 (ID3) and PLS-LD11 are adopted to complete the

prediction task. For KNN algorithm, the predictive result will

be affected by neighbor size k. The results of different k are

shown in Table-1. We can clearly see that they reach best perfor-

mances when k = 1. Therefore, the value of k is set to 1 in the

following experiments.

TABLE-1 

DEPENDENCE OF PREDICTIVE RESULTS 
ON THE NEIGHBOR SIZE k (%) 

CV k = 1 k = 3 k = 5 k = 7 

3-fold 64.11 62.18 59.59 57.52 

5-fold 43.44 33.57 28.75 23.85 

7-fold 29.55 22.48 19.40 16.18 

10-fold 18.52 15.13 13.15 12.25 

 
Similar, for PLS regression in PLS-LD, the number of

PLS components is determined by testing different components

(d) in terms of F-measure. The changed trend with different d

is depicted in Fig. 1. Obviously, all curves take on ascendant

trends when increasing d from 1 to 6. The n-fold curves reach

the top with 93.28, 93.25, 93.37 and 93.42 when d = 12, 14,

14, 12, respectively. When d = 12, the values of 5-fold CV

and 7-fold CV are 93.04 and 93.35 %, which are lower the top

points by merely 0.21 and 0.02 %, respectively. Likewise, all

curves show the downward trends when d > 14. Consequently,

the number of PLS components is set as d = 12.
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Fig. 1. Predictive performances with different d

After setting the optimal parameters C, k and d, the

predictive performances of different classifiers are evaluated

in terms of F-measure. The comparison results are shown in

Fig. 2. It is clear that the performance of KNN descends rapidly

with increasing n. It shows the worst results and gets the highest

F-measure value only 64.11 %. However, the performances

of other classifiers are affected by n rarely. SVM, Adaboost

and PLS-LD give the best results compared with others. For

10-fold CV, SVM, Adaboost and PLS-LD exhibit the best

performances with 94.50, 92.12 and 93.42 %, respectively.

BP, Cart and ID3 give medium performances. Their F-measure

values are 87.91, 87.80 and 82.15 %, respectively, which is

lower than the highest result by 6.59, 6.70 and 12.35 %, respec-

tively. The good predictive results indicate that the proposed

framework based on clustering is feasible and can reach

satisfied predictive results.
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Fig. 2. Performance comparison of different classifiers

Comparison results: The main contribution of this study

is that a novel framework for prediction is to propose rather

than only select the good classifier. For further demonstrating

5840  Sun et al. Asian J. Chem.



the superiority of the proposed framework, we compare it with

two general data processing modes: the first one does not

consider the class imbalance problem and adopts n-fold CV

directly (called Mode 1)12. The second is to select randomly

the same number of samples with the minority class from the

negative samples to complete the prediction task (called Mode

2)4,8. Accordingly, the proposed framework is called as Mode

3. The F-measure comparisons of Mode 1 and Mode 2 with

different classifiers are first shown in Figs. 3 and 4. Similarly,

SVM, Adaboost and PLS-LD keep the best performances for

both modes. However, all results are lower than 90 %. Next,

we compare the F-measure of the three modes. The visual

comparison results of different modes for 7-fold CV are

illustrated in Fig. 5. Obviously, Mode 3 exhibits the best

predictive performance for each classifier, followed by Mode

2. Mode 1 gives the worst results. Taken Adaboost as an

example, the predictive result of Mode 3 is 92.33 % and higher

than Mode 1 and Mode 2 by 19.46 and 10.95 %, respectively.
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Fig. 3. Performance comparison of different classifiers for mode 1
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Fig. 4. Performance comparison of different classifiers for mode 2
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Fig. 5. Comparison of different methods

Analyzing the reason of good performance in Mode 3 is

that it considers the data internal structure. By affinity propa-

gation clustering, the samples with similarity are clustered in

each subset. It can reduce the training burden of classifier with

similar samples and make better classification accuracy. In

other word, the trained classifier for each subset is specific.

For Mode 1, it does not consider class imbalance. The estab-

lished model may be apt for the majority class and results in

the bad predictive results for the minority class. Mode 2 adopts

multiple random sampling to deal with the imbalance problem.

However, the samples in each selection might be dispersed

such that the classifier can not model the training samples

accurately.

Conclusion

A novel framework has been proposed for predicting the

desired structure. Different from general data processing

modes, the data structure is analyzed by clustering when the

class imbalance problem occurs. Compared with two existing

modes, the proposed framework achieves the best predictive

results, which can provide a significant reference for alumino-

phosphates rational synthesis.
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