
INTRODUCTION

Soil is an essential part of agricultural ecological environ-

ment, while the concentration of soil nitrogen is one of the

important indicators measuring the fertility of soil1,2. The

nitrogen content in soil should be monitored for the develop-

ment of precise agriculture. The routine biochemical measure-

ment methods cannot be conducted easily because it is usually

performed with complicated operation, consuming chemical

reagents and cause environmental pollution. It is of great

significance in modern agriculture that establishing direct,

rapid, reagents-free determination for soil nitrogen. The use of

near-infrared (NIR) spectroscopic technology for the analysis

of soil components has been a significant research direction

in recent years3-6.

Near-infrared spectroscopy is a rapid and reagent-less

physical technique, requiring minimal or no sample preparation

and, in contrast with traditional chemical analysis, does not

require reagents, nor produces wastes7-9. NIR spectroscopy has

extensive application in the analytical area of agriculture,

environment, food and biomedicine8-11. By use of Fourier

transform technology, the spectroscopy further improves the
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spectral reproducibility, the accuracy and precision of wave-

length discrimination12. If compared with dispersive NIR

spectroscopy, Fourier transform near-infrared (FT-NIR)

spectroscopy analysis has the advantage of higher instrument

stability, depth of light penetration and predictive capacity of

some quality characteristics13-16.

Partial least squares regression is a popular multivariate

calibration method for spectroscopic analysis because of its

built-in capability to screen spectroscopic data comprehen-

sively, extract informative latent variables and overcome the

collinearity in wavelengths17-19. It has been widely applied to

the quantitative analyses of ultraviolet, near-infrared, Raman

and chromatographic data20-22. However, wavelength selection

is still in demand because the partial least squares predictive

results remain difficult to be improved when the signal-to-

noise ratio (SNR) of the wavelengths is insufficiently high.

Wavelength selection is a tough work. The FT-NIR absor-

ption band of the functional group of the main components of

soil cannot be simply considered as the analytical wavelengths

for the object analyte because of the interference of other

components and noise. Also, the number of FT-NIR wave-

lengths is too large for the existing computing equipments to
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meet the testing for all possible combination of wavelengths.

Although difficult, wavelength selection is a key technical

aspect for improving the predictive effectiveness, reducing

computational complexity and designing a specialized

spectrometer with a high signal-to-noise ratio. Therefore, some

appropriate chemometric methods should be studied to

accomplish wavelength selection.

Linear regression is a simple and commonly used chemo-

metric technique in spectroscopy analysis23. Discrete wavelength

combination, selected by linear regression, has the ability to

improve the modeling predictive effect, if the wavelengths are

selected informative for the analyte. Partial least squares

modeling ability can be improved by using informative discrete

wavelength combination. Discrete single-and-favorite combi-

nation linear regression (DSFCLR) is proposed in this study

for the selection of discrete informative wavelengths. Discrete

single-and-favorite combination linear regression firstly extracts

discrete-single wavelengths which are some of the peaks and

troughs by unary linear regression at every single wavelength

and then searches the favorite wavelengths corresponding to

the discrete-single wavelengths. The discrete-single wave-

lengths combined with their favorites are expected to overcome

the spectral collinearity. If selecting the proper peaks and

troughs, the discrete-single and favorite wavelengths will be

verified pointing to the spectral absorption of the analyte.

Therefore, the DSFCLR method has physical and chemical

significance while retaining the simplicity of linear regression.

The partial least squares models are expected to improve the

FT-NIR predictive results if established on this discrete

wavelength combination selected by DSFCLR method.

Additionally, NIR modelling requires a modelling-vali-

dating division for samples. One portion of samples is firstly

chosen as a validation set, which is not subjected to the mode-

lling optimization process and the remaining samples were

used as the modelling set. The samples in the modelling set

are further divided into two sets: the calibration set and the

prediction set. The calibration samples were used to establish

calibration models with tuning parameters and the prediction

samples were used to evaluate modelling results and further

to optimize modelling parameters. This can be denoted as

calibration-prediction-validation procedure. To establish an

objective, practical and reliable model, a suitable division of

calibration samples and prediction samples is needed in the

calibration-prediction-validation procedure and Kennard-

Stone method24-26 is employed.

EXPERIMENTAL

One hundred and thirty-five soil samples were collected

in Guangxi of China (numbered from 1 to 135). After soil

drying, the samples were sifted by using a 0.5 mm soil sifter.

The nitrogen concentration of each sample was measured by

using the Kjeldahl determination soil analysis method27,28. The

measured values for all samples ranged from 0.056 to 0.289

wt %. The concentration values of nitrogen were used for

spectroscopic analysis applied with the calibration-prediction-

validation division.

The spectral measurement was performed by using

Spectrum One NTS FT-NIR spectrometer (produced by Perkin

Elmer Inc. in USA) equipped with its diffuse reflectance

accessory and a round sample cell. The laboratory temperature

was controlled at 25 ± 1 °C and the relative humidity was at

46 ± 1 % RH throughout the spectral scanning process. The

scanning range of the spectrum spanned 10000 to 4000 cm-1

with a resolution of 8 cm-1. Every sample was measured thrice

and the average of the three measurements was used for mode-

lling. Thus we had 135 average absorption spectra of soil (Fig. 1).
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Fig. 1. The Fourier transform near infrared spectra of 135 soil samples

Sample division and model indicators: NIR modelling

requires a modelling-validating division for samples. Experi-

mental results showed that sample division would in the end

influence the model prediction accuracy. The division for the

calibration and prediction must be based on certain reliability

to avoid evaluation distortion. Kennard-Stone method24-26 is a

famous method for sample division in the field of spectroscopic

analysis. For the calibration-prediction-validation procedure,

a total of 135 samples were divided into three sample sets.

Firstly, 40 samples were randomly selected as the validation

set. Then the remaining 95 samples were used for modelling

and were divided into calibration set (60 samples) and predic-

tion set (35 samples) by using the Kennard-Stone method. The

statistics data of nitrogen concentration for samples in the

calibration, prediction and validation sets were listed in Table-1.

TABLE-1 
STATISTICS OF NITROGEN CONCENTRATION FOR 

CALIBRATION, PREDICTION AND VALIDATION OF SAMPLES 

 Nitrogen concentration (%) 

 Maximum Minimum Mean Standard deviation 

Calibration 0.289 0.067 0.1388 0.0430 

Prediction 0.211 0.056 0.1231 0.0395 

Validation 0.286 0.074 0.1320 0.0502 

 
Calibration models were established based on the cali-

bration samples and the optimal models were selected by the

predictive results of prediction samples. The root mean square

error of prediction (RMSEP) and the correlation coefficients

of prediction (RP) are the two modelling indicators to select

the optimal models. Experience shows that a small value of

RMSEP is always accompanied by a large value of RP, thus
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the model is considered more informative when the RMSEP

is smaller. In order to examine the effectiveness and the model

reliability, the selected model was revalidated against the

validation samples and the model evaluation indicators are

the root mean square error of validation (RMSEV) and the

correlation coefficients of validation (RV).

Principle of discrete single-and-favorite combination

linear regression method: Linear regression is a simple and

commonly used chemometric method. Spectral collinearity

usually addresses adjacent wavelengths in continuous wave-

bands. Wavelength selection must be applied to overcome the

spectral collinearity interruption. Discrete wavelength combi-

nation can be selected if the wavelengths used for linear regre-

ssion is informative. Discrete single-and-favorite combination

linear regression is proposed for the selection of discrete infor-

mative wavelengths.

According to Beer-Lambert law, the concentration of

nitrogen in soil is linear to the spectral absorbance. Firstly, we

established linear regression models at each single wavelength

and tried to select some wavelengths from the peaks and troughs

by comparing the modelling results for all single-wavelength

linear regression models in the full scanning range. In this

way, DSFCLR extracts informative discrete-single wave-

lengths. And then, considering that the simple linear regression

at a single wavelength can not meet the modelling improvement

for FT-NIR analysis, we tried to search another effective wave-

length for each extracted discrete-single wavelength. Through-

out the full range of spectrum, we establish binary linear

regression for each wavelength combined with the extracted

discrete-single wavelength. By comparing the modelling

results, we finally find the most effective wavelength to the

extracted discrete-single wavelength, denoted as the favourite

wavelength in correspondence to the discrete-single wave-

length. Both the discrete-single wavelengths and the favourite

wavelengths will be put together as the discrete wavelength

combination for modelling. Taking 2 discrete-single wave-

lengths as an example (Fig. 2) shows the sketch for searching

the discrete wavelength combination by DSFCLR method.

Fig. 2. The sketch for searching the discrete wavelength combination by

DSFCLR method

As informative discrete wavelengths, the discrete wave-

length combination (i.e. the combined use of all the discrete-

single wavelengths with their favourites) is hoped to improve

partial least squares modelling results with the expectation to

overcome the spectral collinearity for FT-NIR analysis. If the

peaks and troughs are properly selected, the discrete-single

and favourite wavelength combination will point to the

spectral absorption of the analyte. The advantages of discrete

wavelengths selected through DSFCLR are at a low degree of

freedom and low computational complexity. An appropriate

discrete wavelength combination can be conveniently screened

from the full scanning range along with the amount of wave-

lengths.

RESULTS AND DISCUSSION

The FT-NIR diffuse absorption spectra of 135 soil samples

were measured in the full spectral scanning range of 10000-

4000 cm-1. For the calibration-prediction-validation procedure,

40 samples were randomly selected as the validation set and

the remaining 95 samples were used for modelling, divided

into calibration set (60 samples) and prediction set (35 samples)

by using the Kennard-Stone method. Sixty samples in the

calibration set were used to establish calibration models with

tuning parameters, 35 samples in the prediction set were

applied to the calibration models to evaluate modelling results

and further to optimize modelling parameters. The randomly

selected 40 samples in the validation set were not subjected to

the modelling-optimization process but were used to validate

the established models.

Selection of discrete wavelength combination by discrete

single-and-favorite combination linear regression method:

The above mentioned DSFCLR method was used to select the

discrete wavelength combination for calibration models to

improve the partial least squares modelling ability. Firstly,

unary linear regression models were established at each single

wavelength in the full scanning range and the corresponding

curve of RMSEP was drawn in Fig. 3. Accordingly the wave-

lengths with minimum values of RMSEP (i.e. the troughs of

the RMSEP curve) were selected into the discrete wavelength

combination. Considering that some informative wavelengths

are difficult to be found by simple linear regression and they

always hide at the wavelengths with extreme values of RMSEP28,

the peaks of the RMSEP curve should be added into the discrete

wavelength combination. Therefore, 18 discrete-single wave-

lengths (the peaks and troughs with dash drop lines in Fig. 3)

were selected into the discrete wavelength combination for

establishing calibration models. The specific numbers of these

18 wavelengths were listed in Table-2. Secondly, the simple

linear regression at a single wavelength provides a suitable

discrete combination, but the informative wavelengths are not

all at the peaks and troughs of the RMSEP curve, a better

combination can be made if the favourite wavelengths can be

added in. By the procedure of DSFCLR, we effort to find out

the favourite wavelengths in correspondence to the 18 discrete-

single wavelengths by establishing and evaluating the binary

linear regression models running through the full range of

spectrum (Fig. 4). Then both the discrete-single wavelengths

and the favourite wavelengths will be put together, the duplicates
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eliminated, used as the informative discrete wavelength combi-

nation for modelling. At last the discrete wavelength combi-

nation included a total of 32 wavelengths (Table-3). It can be

seen that most of the wavelengths listed in Table-3 are the FT-

NIR response of the functional groups of soil components

containing nitrogen, such as bonds of C-N, N-H, etc.6,8-9 The

output discrete wavelength combination showed a high SNR

for analysis of soil nitrogen. This indicates that the method of

DSFCLR is quite reasonable. As for the computational simpli-

city, DSFCLR method is expected to be a potential chemo-

metric technique in spectroscopic analysis for tuning modelling

variants.
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Fig. 3. RMSEP of linear regression models at each single wavelength
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Fig. 4. Favourite wavelengths corresponding to the 18 selected discrete-

single wavelengths

Partial least squares modelling improvement with the

discrete wavelength combination: Partial least squares

regression is a popular multivariate calibration method with

the integration of principal component analysis and multiple

TABLE-2 
EIGHTEEN SELECTED DISCRETE-SINGLE WAVELENGTHS 

Discrete-single 
wavelengths (cm-1) 

8957, 8838, 8743, 8385, 7925, 7659, 7464, 
6527, 6121, 5994, 5673, 5458, 4914, 4827, 

4632, 4489, 4278, 4183 

 
TABLE-3 

A TOTAL OF 32 WAVELENGTHS INCLUDING THE 
SELECTED DISCRETE-SINGLE AND THE 

CORRESPONDING FAVORITE WAVELENGTHS 

Discrete wavelength 
combination (cm-1) 

9827, 9315, 8957, 8838, 8743, 8532, 8385, 
7988, 7925, 7659, 7563, 7464, 7099, 6527, 
6395, 6121, 5994, 5895, 5748, 5673, 5458, 
5025, 4962, 4914, 4827, 4815, 4799, 4632, 
4489, 4358, 4278, 4183 

Note: The underlined numbers were newly-added from the favorite 
wavelengths 

 
linear regression. The number of latent variables is denoted as

the partial least squares factor, which is the important parameter

for tuning in partial least squares modelling. Wavelength selec-

tion is in demand for partial least squares regression because

the signal-to-noise ratio of the wavelengths used for modelling

affects the predictive results. The above mentioned DSFCLR

method provides discrete wavelength combination for partial

least squares modelling. Additionally, moving window partial

least squares (MWPLS) has been proven an effective method

for waveband selection29-30. To evaluate the modelling impro-

vement, the partial least squares models were established by

the DSFCLR-selected discrete wavelength combination and

by the MWPLS-selected waveband.

Thirty two discrete wavelengths above-selected by DSFCLR

were used as the variables for partial least squares modelling,

the discrete combination partial least squares (DCPLS) models

were established and optimized by tuning the partial least

squares factor (from 1 to 15) and the latent variables. The optimal

model was selected with the optimal partial least squares factor

as 6 (Fig. 5).

R
M

S
E

P
 (

w
t 

%
)

1.9

1.8

1.7

1.6

1.5

1.4

1.3

(x10 )
–2

PLS factor of DCPLS modelling

0 2 4 6  8 10 12 14 16

Fig. 5. RMSEP corresponding to each PLS factor for DCPLS modelling

For MWPLS, the moving windows run through the full

spectral range by changing the beginning wavelength and the

number of wavelengths. The wavelengths in each window were

used as the variables for partial least squares modelling. The
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optimal model with its modelling window (6053-5136 cm-1)

was selected by tuning the beginning wavelength, the number

of wavelengths and the partial least squares factor.

As for the comparison, the full-range partial least squares

models were simultaneously established and optimized. And

the best optimal models from DCPLS, MWPLS and full-range

partial least squares were listed with their parameters, mode-

lling indicators and validating indicators (Table-4). As is

compared in Table-4, in the modelling part, the DCPLS model

and the MWPLS model gave out better prediction and vali-

dation results than the full-range PLS model and the best result

is obtained by DCPLS; while in the validating part, DCPLS

model gave out a relative minimum value of RMSEV and a

corresponding high RV.

TABLE-4 
PREDICTION ACCURACY OF THE OPTIMAL DCPLS 

MODEL, THE OPTIMAL MWPLS MODEL AND 
THE FULL-RANGE PARTIAL LEAST SQUARES MODEL 

 No. of 
wave-

numbers 

PLS 
factor 

RMSE
P (wt 
%) 

RP 
RMSEV 
(wt %) 

RV 

DCPLS 32 6 0.0140 0.923 0.0154 0.912 

MWPLS 232 9 0.0156 0.897 0.0176 0.866 

Full-range 
PLS 

1512 14 0.0194 0.862 0.0224 0.791 

 

It is concluded that DSFCLR method provided an

informative discrete wavelength combination for DCPLS

modelling, for the reason that the discrete-single wavelengths

their favourite wavelengths, selected out with by linear regre-

ssion, are the FT-NIR response of the functional groups of

soil nitrogen. The discrete wavelength combination showed a

high signal-to-noise ratio, with overcoming the collinearity in

spectral data. The best DCPLS model gave a relative better

RMSEP of 0.0140 (wt %) and a corresponding RP of 0.923.

Model validation: The randomly selected validation

samples were not subjected to the modelling optimization

process but were used to validate the best model by DCPLS

method, with the corresponding best partial least squares factor

of 6. In the procedure of partial least squares regression, the 6

latent valuables were constructed from the 32 discrete

wavelengths selected by DSFCLR. The regression coefficients

were successively calculated using the 6 partial least squares

latent variables and the nitrogen concentrations. For validation,

the FT-NIR predicted values of nitrogen were the calculated

using the obtained regression coefficients and the latent

valuables from the validation samples. The predicted values

of soil nitrogen are given by

∑
=

+=

6

1i

iipred ukbc  = 191 – 12467u1 + 7517u2 + 2603u3

  – 1861u4 + 1427u5 – 702u6

where cpred means FT-NIR predicted value of soil nitrogen, ui

stands for the partial least squares latent variables, ki is the

regression coefficient for the latent variables and b is constant.

Fig. 6 showed the correlation between the FT-NIR predic-

ted value and the concentration of nitrogen for the 40 validation

samples based on the optimal DCPLS model. The FT-NIR

predicted values of the validation samples are close to the

measured concentrations. The RMSEV and RV were 0.0154

(wt %) and 0.912, respectively. This result of DCPLS modeling

is quite acceptable. This indicates that DSFCLR method is

able to search out the informative wavelength combination in

the way of finding the discrete-single wavelengths as well as

their favorites. As for the computational simplicity, DSFCLR

method is expected to be a powerful chemometric technique

in spectroscopic analysis for tuning and selecting modeling

wavelengths.
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Conclusion

Discrete wavelength combination was used for improving

the partial least squares modelling ability in the analysis of

soil nitrogen by FT-NIR spectrometry in this study. Discrete

single-and-favorite combination linear regression method was

proposed for searching the discrete wavelength combination

based on the principle of linear regression. It extracts the

informative discrete-single wavelengths as well as their favou-

rite wavelengths, so it can effectively overcome spectral

collinearity interruption. Most of the wavelengths selected by

DSFCLR method were confirmed to be the FT-NIR spectral

response of the functional groups of soil nitrogen, the DSFCLR

method has physical and chemical significance and the selected

discrete wavelength combination is quite objective and reliable.

The selected discrete wavelength combination is further

applied to establish DCPLS models for improving the FT-NIR

predictive accuracy. By compared to the full-range partial least

squares model and to the MWPLS model, the DCPLS model

reached better predictive results both in the modeling part and

in the validating part. discrete combination partial least squares

is much precise, accurate and reliable and also retains the

simplicity of linear regression.

Discrete single-and-favorite combination linear regression

method is expected to be a powerful chemometric technique

in spectroscopic analysis for tuning modelling variants and
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selecting discrete wavelength combination. Discrete single-

and-favorite combination linear regression method combined

with DCPLS modelling has great potential in practical appli-

cation. These findings provide valuable reference for the design

of specialized discrete spectrometers.
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