

Synthesis and Thermo-chemical Profile of [Pt(NH₃)₄]C₂O₄ and [Pt(NH₃)₄](OOCCH₂COO) as New Precursors for Supported Platinum Catalysts

JUAN YU¹, JING LEI², CAIXIAN YAN¹, JING JIANG¹, QINGSONG YE¹, QIAOWEN CHANG¹, WEIPING LIU^{1,*} and JIALIN CHEN^{1,*}

¹State Key Lab of Advanced Technologies for PGM, Kunming Institute of Precious Metals, Kunming 650106, P.R. China ²School of Chemistry, Hunan Normal University, Changsha 410081, P.R. China

*Corresponding authors: E-mail: liuweiping0917@126.com; cjl@ipm.com.cn

Received: 16 August 2013;	Accepted: 30 September 2013;	Published online: 16 July 2014;	AJC-15566

Two water-soluble complexes featuring $[Pt(NH_3)_4]^{2+}$ as a cation and common dicarboxylate (oxalate or malonate) as counter anion have been synthesized, characterized and evaluated for their thermo-chemical profile. The complexes can be easily synthesized in a yield of about 85 % from K₂PtCl₄ *via* a series of ligand substitution reactions at mild temperatures and under normal pressures. The thermolysis temperatures and products both in inert and oxidative atmosphere were determined by TG-DTA along with GC-MS. The thermolysis of $[Pt(NH_3)_4](C_2O_4)$ begins at about 220 °C and ends at 270 °C, forming metallic platinum, CO₂ and NH₃, whereas $[Pt(NH_3)_4](OOCCH_2COO)$ undergoes a two-phase thermolysis. The first phase corresponds to the loss of one amminia from 105 °C, followed by the second phase, leading to complete destruction of the complex at 270 °C. The final products are metallic platinum, CO₂, NH₃ and CH₃CONH₂. The thermolysis is caused by the intramolecular redox reaction. These unique properties render the two complexes potential as the new alternative precursors for supported platinum catalysts.

Keywords: Tetraammineplatinumoxalate, Tetraammineplatinummolonate, Thermochemical profile, Platinum catalyst.

INTRODUCTION

Supported platinum catalysts are an important kind of industrial catalysts and have been widely applied to varied chemical processes, particularly in purification of automobile exhaust¹. Chemical wet impregnation is a conventional technique currently used for the production of supported platinum catalysts² and platinum compounds are necessary as the precursor of active component for this technique. There are a number of platinum compound commercially available in the market, but only a few can be employed as the precursors. These platinum precursors include H₂PtCl₆, [Pt(NH₃)₄]Cl₂, [Pt(NH₃)₄](NO₃)₂ and (HOCH₂CH₂NH₃⁺)₂Pt(OH)₆³⁻⁵. As a precursor has substantial effects on the catalytic activity, the selection of the best precursor for a particular catalyst in a specific reaction can be critical⁶⁻⁸. An example is Pt/Al₂O₃ for automobile exhaust purification. The precursor for this specific application should be Cl-free and water-soluble platinum compounds such as [Pt(NH₃)₄](NO₃)₂ and (HOCH₂CH₂NH₃⁺)₂Pt(OH)₆, for Cl poisons the oxidation activity of platinum⁹⁻¹³. Our recent finding that the presence of nitrate in the catalyst shortens the service life has caused concern with regard to the use of nitrate precursor $[Pt(NH_3)_4](NO_3)_2$. As a result, the choice of the suitable precursor for supported platinum catalysts, especially the catalyst used in automobile exhaust purification, is often confined to one compound (HOCH₂CH₂NH₃⁺)₂Pt(OH)₆ which can only provide complex anions in the dipping process¹⁴⁻¹⁷. Therefore, there has been substantial need for developing new suitable platinum precursors for automobile exhaust purification catalysts. For a platinum compound to be used as a successful precursor, there are a number criteria. It should be soluble and stable in aqueous solution, does not contain harmful elements such as K, Na, Li, P, S, etc. and decompose cleanly on the surface of support. Of particular importance is the exclusion of Cl⁻ and NO₃⁻ as the ligand or the counter anion of the compound. In addition, the compound needs to be cost effective. Based on these requirements, two new precursors, $[Pt(NH_3)_4]C_2O_4$ and $[Pt(NH_3)_4](OOCCH_2COO)$, have been designed, synthesized and evaluated in the present paper with the intention of providing alternative precursors for supported platinum catalysts.

EXPERIMENTAL

K₂PtCl₄ was purchased from sino-platinum Corporation and other reagents are commercially available and were used without any further purification. Chemical analysis for C, H and N was performed with a Carlo-Ebra Instrument, whereas platinum was determined according to the method in USP24. Mass spectrometry studies were carried out on a VG-Autospec Spectrometry in the FAB⁺ mode using glycerine as matrix. FT-IR spectra were recorded in the 4000-400 cm⁻¹ regions on a Perkin Elmer 880 spectrometer with KBr pellets. ¹H was obtained on Bruker AM-500 relative to TMS as an external standard.

Thermogravimetric and differential thermal analysis (TG-DTA) was carried out with a Netzsch STA 409 PG/PC Jupiter thermo-analytical equipment either in nitrogen atmosphere or in oxidative (20 % O_2 and 80 % N_2) atmosphere (flux rate: 40 mL/min, heating rate: 10 °C/min, sample mass: 10-13 mg).

Gas decomposition products of the compounds were analyzed by GC-MS connected to the outlet of the thermal reactor. GC-MS analysis were performed in a gas chromatograph 2000 series equipped with a finnigan MS mass spectrometer (HP6890N/5972), using nitrogen or oxidative atmosphere as carrier gas (1 mL/min). a HP-5MS (30 m × 0.25 mm × 0.25 μ m) was used as a separation column for GC. The chromatographic peaks were identified by comparison of their mass spectra with the equipment's mass spectral library.

Synthesis of *cis*-[Pt(NH₃)₂I₂]: K₂PtCl₄ (100 g, 240 mmol) was mixed at 45 °C with KI (240 g, 6×240 mmol) in 500 mL H₂O for 4 h and then 14 % ammonia solution (90 mL, $1.3 \times 2 \times 240$ mmol) was slowly added with vigorously stirring. After standing for 2 h, the resulting yellow precipitate *cis*-[Pt(NH₃)₂I₂] was collected by filtration, washed with water and ethanol and dried *in vacuo* at 65 °C. The yield was 95 % (110 g). Anal. calcd. for Pt(NH₃)₂I₂ (482.9): Pt, 40.4. found: Pt, 39.8.

Synthesis of [Pt(NH₃)₄](C₂O₄): [Pt(NH₃)₄](C₂O₄) was synthesized by using the process described in our previous work¹⁸ but with some improvements. Briefly, *cis*-[Pt(NH₃)₂I₂] (50 g, 103 mmol) was mixed with a 200 mL solution of silver nitrate (34.82 g, 205 mmol) and stirred at 55 °C for about 10 h until no free silver ions could be detected by the precipitation reaction with NaCl. After AgI was filtrated off, potassium oxalate monohydrate (21 g, 114 mmol) was added to the filtrate, producing a white precipitate *cis*-[Pt(NH₃)₂(C₂O₄)] The precipitate was filtrated off, washed with water and dissolved in 100 mL, 14 % ammonia solution. The resulting solution was first heated in a boiling water bath to remove excessive ammonia and then transferred to a rotary evaporator. Water was evaporated under reduced pressure to produce a nearly

white crystal product of $[Pt(NH_3)_4](C_2O_4)$ under a reduced pressure. The product was collected and dried *in vacuo* at 60 °C. Yield: 91 % (32.9 g). Anal. Calcd. for $[Pt(NH_3)_4]C_2O_4$ (351.1): C, 6.84; H, 3.42; N, 15.95; Pt, 55.57. Found: C, 6.80; H, 3.46; N, 15.85; Pt, 55.10. FAB⁺-MS (m/e, RI): 352(M⁺, 7 %), 262 (Pt(NH_3)_4⁺, 37 %) IR (KBr, v_{max}, cm⁻¹): 3288, 3112 (m, v_{N-H}), 1609 (vs, v_{as(COO)}), 1363 (vs, v_{a(COO)}), 1090 (s, v_{C-O}), 511(w, v_{Pt-N}). ¹H NMR (DMSO, ppm): 5.37 (s, \approx 12H, 4NH₃).

Synthesis of [Pt(NH₃)₄](OOCCH₂COO): [Pt(NH₃)₄] (OOCCH₂COO) was synthesized by following the procedure similar to that for [Pt(NH₃)₄](C₂O₄). Starting from 50 g *cis*-[Pt(NH₃)₂I₂] and with 21 g potassium malonate added, 33.1 g [Pt(NH₃)₄](OOCCH₂COO) was obtained and the yield was 88 %. Anal. Calcd. for [Pt(NH₃)₄](OOCCH₂COO) (365.1): C, 9.86; H, 3.83; N, 15.34; Pt, 53.43. Found: C, 9.73; H, 3.88; N, 15.10; Pt, 53.12. FAB⁺-MS (m/e, RI): 262 (Pt(NH₃)₄⁺, 93 %). IR (KBr, v_{max}, cm⁻¹): 3264, 3012 (m, v_{N-H}), 1638-1535 (vs, v_{as(COO)}), 1431 (vs, v_{a(COO)}), 1087 (s, v_{C-O}), 510 (w, v_{Pt-N}). ¹H NMR (DMSO, ppm): 5.30 (s, ≈ 12H, 4NH₃), 3.16 (≈2H, CH₂(COO⁻)₂).

RESULTS AND DISCUSSION

Designed complexes $[Pt(NH_3)_4](C_2O_4)$ and $[Pt(NH3)_4]$ (OOCCH₂COO) can be synthesized from K_2PtCl_4 as the starting material by following the procedure illustrated in Fig. 1. K₂PtCl₄ was first converted *in situ* to K₂PtI₄ with KI and then to the insoluble intermediate cis-[Pt(NH₃)₂I₂] by ammonia, with a yield of up to 95 %. The coordinated iodide was removed in form of AgI from cis-[Pt(NH₃)₂I₂], producing a very soluble species cis-[Pt(NH₃)₂(H₂O)₂](NO₃)₂ from which cis- $[Pt(NH_3)_2X_2]$ was precipitated upon the addition of K_2X_2 . Substitution of X₂ coordinated to platinum with strong ammine ligand offered the final product $[Pt(NH_3)_4]X_2$ with a yield of 91 % for [Pt(NH₃)₄]C₂O₄ and 88 % for [Pt(NH₃)₄](OOCCH₂COO) calculated from cis-[Pt(NH₃)₂I₂]. The overall yield was 86 % and 84 %, respectively. All the synthetic conditions were mild and easy to be controlled. Platinum and silver in the waste resulting from synthetic process can be easily recovered by the conventional methods and recycled.

Both complexes were structurally characterized by chemical analysis and spectroscopic data. The content of Pt, C, N and H was in good agreement with the calculated value.

$$\begin{aligned} & \mathsf{K}_2\mathsf{PtCl}_4 \xrightarrow{\mathsf{KI}} \mathsf{K}_2\mathsf{Ptl}_4 \xrightarrow{\mathsf{NH}_3} cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2\mathsf{I}_2] \downarrow \xrightarrow{\mathsf{AgNO}_3} cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2(\mathsf{H}_2\mathsf{O})_2](\mathsf{NO}_3)_2 \\ & \xrightarrow{\mathsf{K}_2\mathsf{X}_2} cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2\mathsf{X}_2] \downarrow \xrightarrow{\mathsf{NH}_3} [\mathsf{Pt}(\mathsf{NH}_3)_4]\mathsf{X}_2 \\ & \mathsf{K}_2\mathsf{PtCl}_4 + 4\mathsf{KI} \longrightarrow \mathsf{K}_2\mathsf{PtI}_4 + 4\mathsf{KCl} \\ & \mathsf{K}_2\mathsf{PtI}_4 + 2\mathsf{NH}_3 \longrightarrow cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2\mathsf{I}_2] \downarrow + 2\mathsf{KI} \\ & cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2\mathsf{I}_2] + 2\mathsf{AgNO}_3 \longrightarrow cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2(\mathsf{H}_2\mathsf{O})_2](\mathsf{NO}_3)_2 + 2\mathsf{AgI} \downarrow \\ & cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2(\mathsf{H}_2\mathsf{O})_2](\mathsf{NO}_3)_2 + \mathsf{K}_2\mathsf{X}_2 \longrightarrow cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2\mathsf{X}_2] \downarrow + 2\mathsf{KNO}_3 \\ & cis\operatorname{-}[\mathsf{Pt}(\mathsf{NH}_3)_2\mathsf{X}_2] + 2\mathsf{NH}_3 \longrightarrow [\mathsf{Pt}(\mathsf{NH}_3)_4]\mathsf{X}_2 \end{aligned}$$

 $X_2 = C_2O_4, \text{ OOCCH}_2\text{COO}$ Fig. 1. Synthetic scheme and reactions of [Pt(NH₃)₄]C₂O₄ and [Pt(NH₃)₄](OOCCH₂COO) The fragment ion peak corresponding to $[Pt(NH_3)_4]^{2+}$ was developed in FAB⁺-MS spectra of the complexes. The coordination of NH₃ to Pt was confirmed by the presence of an absorption band near 510 cm⁻¹. The resonance with approximately 12 protons near 5.3 ppm in ¹H NMR spectra can be designated to 4NH₃. For $[Pt(NH_3)_4](OOCCH_2COO)$, there was another resonance at 3.16 ppm due to two protons of $(OOCCH_2COO)^{2-}$. All above data show that in the molecule of two complexes, platinum(II) is coordinated by 4NH₃, forming a bivalent coordinated cation and X₂ ions lie outside the coordinated sphere, acting as the counter anions, as shown in Fig. 2.

Fig. 2. Chemical structure of $[Pt(NH_3)_4]C_2O_4$ (a) and $[Pt(NH_3)_4]$ (OOCCH_2COO) (b)

As ionic compounds, the complexes, similar to $[Pt(NH_3)_4](NO_3)_2^{19}$, have a water solubility of more than 40 g/L, sufficient for a precursors used in the manufacture of varied supported platinum catalysts and they are also stable both in the air and in aqueous solutions.

The thermal chemical behaviour of two complexes was studied by TG/DTA and the gaseous thermolysis products at 270 °C were analyzed by GC-MS. The TG-DTA curves are shown in Figs. 3 and 4 and the main products are listed in Table-1. For [Pt(NH₃)₄](C₂O₄). An apparent weight loss of about 44 % was observed from 229-273 ° C with an endothermic DTA peak at 245 °C in N2 atmosphere and from 210-253 °C with an sharp exothermic DTA peak at 252 °C in the mixture atmosphere of N2 and O2, corresponding to the complete decomposition of $[Pt(NH_3)_4](C_2O_4)$. The percentage of 56 % of remaining solid residue is in a good agreement with the calculated value of platinum content in $[Pt(NH_3)_4](C_2O_4)$ and the gaseous thermolysis products were determined to be CO2 and NH3 at 270 °C. A 2 % weight gain was found in the oxidative environment from 500-600 °C due to the partial oxidation of tiny platinum particles. The atmospheres did not have much effects on both decomposition temperatures and decomposition products in the range of 210-270 °C, implying that the thermal decomposition of $[Pt(NH_3)_4](C_2O_4)$ was the result of an intra-molecular redox reaction in which Pt(II) was reduced to Pt by oxalate, as illustrated by the following reaction.

 $[Pt(NH_3)_4]C_2O_4 \xrightarrow{210-270 \text{ °C}} Pt + NH_3 + CO_2$

From the TG/DTA curves of Pt(NH₃)₄](OOCCH₂COO), it can be seen that there was a approximately 4.5 % weight loss from 105-150 °C accompanied by an endothermic DTA peak at 132 °C. This corresponded to the loss of one NH₃ from Pt(NH₃)₄](OOCCH₂COO). Above that temperature point, the TG/DTA curves are very similar to those for [Pt(NH₃)₄](C₂O₄), suggesting that they had similar thermal behaviour. An apparent weight loss of about 42 % from 220-260 °C occurred with an endothermic DTA peak at 248 °C in N₂ atmosphere and an

Fig. 3. TG and DTA curves of $[Pt(NH_3)_4](C_2O_4)$ in inert and in oxidative atmosphere

Fig. 4. TG and DTA curves of [Pt(NH₃)₄](OOCCH₂COO) in inert and in oxidative atmosphere

sharp exothermic DTA peak at 256 °C in the mixture atmosphere of N₂ and O₂, corresponding to the complete decomposition of $[Pt(NH_3)_4](OOCCH_2COO)$. The percentage of 53 % of remaining solid residue is in a good agreement with the calculated value of platinum content in $[Pt(NH_3)_4](OOCCH_2COO)$ and the gaseous thermolysis products at 270 °C were found to be CO₂ and NH₃ and CH₃CONH₂. The third product CH₃CONH₂ was probably formed by the reaction of CH₃COOH with NH₃ in the gaseous phase. A slight weight gain because of the partial oxidation of tiny platinum particles was also observed in the oxidative environment in the range of 500-700 °C. The thermal decomposition of $[Pt(NH_3)_4]$ (OOCCH₂COO) was also caused by the intramolecular redox reaction in which Pt(II) was reduced to Pt by malonate, as illustrated by the following reaction.

$$[Pt(NH_{3})_{4}](OOCH_{2}COO) \xrightarrow{105-150 \ \ \mathbb{C}} [Pt(NH_{3})_{3}](OOCH_{2}COO) + NH_{3} \\ \downarrow 210-270 \ \ \mathbb{C} \\ Pt + \frac{NH_{3} + CH_{3}COOH}{1} \\ \downarrow 270 \ \ \mathbb{C}$$

CH₃CONH₂

TABLE-1 MAIN GASEOUS THERMOLYSIS PRODUCTS OF THE COMPLEXES AT 270 °C			
Complex	Atmosphere	Thermolysis product	
	80 % N ₂ + 20 % O ₂	CO ₂ , NH ₃	
$[\Gamma ((N\Pi_3)_4]C_2O_4$	N_2	CO ₂ , NH ₃	
[Pt(NH ₃) ₄](OOCC	80 % N ₂ + 20 % O ₂	CO ₂ , CH ₃ CONH ₂ , NH ₃	
H ₂ COO)	N_2	CO ₂ , CH ₃ CONH ₂ , NH ₃	

Conclusion

Two novel complexes $[Pt(NH_3)_4](C_2O_4)$ and $[Pt(NH_3)_4]$ (OOCCH₂COO) have been developed as alternative precursors for supported platinum catalysts. The synthetic routes are very effective with an overall yield of up to 85 % and Pt-containing waste can be easily recovered by the conventional methods and recycled. All the synthetic conditions are mild and easy to be controlled, which is acceptable with respect to industrial manufacturing. The complexes have a good water-solubility, do not contain chloride or nitrate and are able to provide complex cations in the dipping process. More importantly, they undergo intra-molecular self-redox at a moderate temperature of about 270 °C, forming metallic platinum and gaseous products: NH_3 and CO_2 from [Pt(NH_3)₄](C_2O_4), CO_2 and CH_3CONH_2 and NH_3 from [Pt(NH_3)₄](OOCCH₂COO), an ideal thermo-chemical profile as a precursor.

ACKNOWLEDGEMENTS

The authors are grateful to the China National Research and Development Program (Grant No. 2012BAE06B08, 2012EG115008) and Yunnan Province program (Grant No. 2010ZC250) for financial supports.

REFERENCES

- 1. C. Barnard and A. Fones, *Platinum Met. Rev.*, 56, 165 (2012).
- 2. A.E. Aksoylu, J.L. Faria, M.F.R. Pereira, J.L. Figueiredo, P. Serp, J.-C. Hierso, R. Feurer, Y. Kihn and P. Kalck, *Appl. Catal. A*, **243**, 357 (2003).
- 3. M. Abid and R. Touroude, *Catal. Lett.*, **69**, 139 (2000)
- 4. K. Lehnert and P. Claus, *Catal. Commun.*, **9**, 2543 (2008).
- I. Rosso, C. Galletti, S. Fiorot, G. Saracco, E. Garrone and V. Specchia, *J. Porous Mater.*, 14, 245 (2007).
- 6. J.A.A. van den Tillaart, J. Leyrer, S. Eckhoff and E.S. Lox, *Appl. Catal. B*, **10**, 53 (1996).
- P. Reyes, G. Pecchi, M. Morales and J.L.G. Fierro, *Appl. Catal. A*, 163, 145 (1997).
- P.J. Schmitz, R.J. Kudla, A.R. Drews, A.E. Chen, C.K. Lowe-Ma, R.W. McCabe, W.F. Schneider and C.T. Goralski Jr., *Appl. Catal. B*, 67, 246 (2006).
- F.J. Gracia, J.T. Miller, A.J. Kropf and E.E. Wolf, J. Catal., 209, 341 (2002).
- 10. M. Paulis, H. Peyrard and M. Montes, J. Catal., 199, 30 (2001).
- 11. N.W. Cant, D.E. Angove and M.J. Patterson, *Catal. Today*, **44**, 93 (1998).
- 12. E. Marceau and H. Lauron-Pernot, Chem. J. Catal, 197, 394 (2001).
- 13. D. Roth, P. Gelin, M. Primet and E. Tena, *Appl. Catal. A*, **203**, 37 (2000).
- 14. S.I. Matsumoto, Catal. Today, 90, 183 (2004).
- L. Mussmann, D. Lindner, M. Votsmeier, E. Lox and T. Kreuzen, Single Layer High Performance Catalyst, US Patent 6,524,992 B2 (2003).
- L. Mussmann, D. Lindner, M. Harris, T. Kreuzer and E. Lox, Layered Noble Metal-Containing Exhaust Gas Catalyst and Its Preparation, US Patent 6,294,140 B1 (2007).
- M. Reisinger, R. Hausmann, B. Chen, T. Tacke, G. Stochniol, P. Panster, L. Mussmann, D. Lindner, M.Harris, T. Kreuzer and E. Lox, Group 8 Catalyst on Catalyst Support; Oxidation Gas Streams, US Patent 20040028589 A1 (2004).
- X.Z. Chen, Q.S. Ye, M.J. Xie, J.L. Chen, Z.F. Pan and W.P. Liu, *Res. Chem. Intermed.*, 38, 421 (2012).
- 19. X.Z. Chen, J.L. Chen, Z.F. Pan, Q.S. Ye, W.P. Liu, Y. Yu and Q.W. Chang, *Asian J. Chem.*, **22**, 6493 (2010).