

Synthesis and Crystal Structure of 4-Methyl-5-nitro-1,2,3-triazole

HUAN HUO, BO-ZHOU WANG, JUN DONG*, LIN MA and CHENG ZHOU

Xi'an Modern Chemistry Research Institute, Xi'an 710065, Shaanxi Province, P.R. China

*Corresponding author: Tel: +86 29 88291536; E-mail: dyks_@sohu.com

Received: 16 August 2013;	Accepted: 24 December 2013;	Published online: 16 July 2014;	AJC-15563
---------------------------	-----------------------------	---------------------------------	-----------

4-Methyl-5-nitro-1,2,3-triazole was synthesized from ethyl 2,2-dinitroacetate by cyclization. The structure of the compound was characterized by ¹H NMR, ¹³C NMR, FT-IR, elementary analysis and X-ray single-crystal diffraction analysis. The title compound (C₃H₄N₄O₂, Mr = 129.11) was crystallized in orthorhombic system, Pbca space group with a = 8.7139(17), b = 9.8198(19), c = 12.889(3)Å, V = 1102.9(4) Å³, Z = 8, Dc = 1.555 g/cm³, λ = 0.071073 Å, μ (MoK_{α}) = 0.131 mm⁻¹, F(000) = 536, S = 1.021, R = 0.0490 and wR = 0.1468 for 1559 observed reflections with I > 2 σ (I).

Keywords: Organic chemistry, 1,2,3-Triazole compound, Crystal structure, Synthesis.

INTRODUCTION

Recently, 1,2,3-triazoles units are interesting structural framework found in all kinds of energetic materials and medicament¹⁻³. 4-Methyl-5-nitro-1,2,3-triazole is an important organic intermediate, which has been employed to design and synthesize numerous energetic compounds. For example, taking 4-methyl-5-nitro-1,2,3-triazole as primary substances, 4-amino-5-nitro-1,2,3-triazole (ANTZ) was synthesized^{4,5}, it was identified as a kind of potential high performance insensitive explosive and has some desirable attributes, including a high nitrogen content of 54 %, high density 1.837 g/cm³, combustion heat of 1350.5 kJ/mol and relatively low sensitivity to shock or impact-included ignition with H₅₀ of 154 cm, which can be used as a main insensitive energetic component of cast explosives and propellants to substitute TATB, RDX or HMX. In order to confirm the molecular structure of compound 2, its single crystals were grown and its crystal structure was characterized by single-crystal X-ray diffraction analysis.

EXPERIMENTAL

Ethyl 2,2-dinitroacetate was prepared and purified from a reported method⁶ by Xi'an Modern Chemistry Research Institute and other reagents were purchased from commercial sources. ¹H NMR and ¹³C NMR were obtained in CDCl₃ on a Bruker AV500 NMR spectrometer. Infrared spectra were obtained from KBr pellets on a Nicolet NEXUS870 Infrared spectrometer in the range of 4000-400 cm⁻¹. Elemental analyses (C, H and N) were performed on a VARI-El-3 elemental analyzer. Synthesis and characterization: Using ethyl 2,2-dinitroacetate 1 as the starting material, our target compound 2 was synthesized *via* cyclization with a yield of 18.2 % outlined in Scheme-I.

Scheme-I: Synthetic route for the title compound

Ethyl 2,2-dinitroacetate (6.6 g, 30 mmol, yield of 93 %), 45 mL water were mixed in a three-necked round-bottomed flask with a stirrer. To the reaction mixture, 40 % acetaldehyde (7.9 g, 45 mmol) and NaN₃ (5.8 g, 90 mmol) were added in turn and adjusted to pH 4 by 70 % sulfuric acid. After stirring for 2 h at 80 °C, adjusted to pH 2 by 20 % sulfuric acid and stirred for another 1 h at 100 °C. After cooling to room temperature, the mixture was put into a beaker and 20 % NaOH was added with stirring until the pH = 7-8. The final mixture was extracted with ether. The organic phase was combined and dried over MgSO₄. The white product was obtained after evaporating the solvent and then recrystallized from 1,2-dichloroethane to give the pure solid product 0.8 g in a yield of 18.2 %. m.p.: 177-179 °C. Analysis Calculated (%) for C₃H₄N₄O₂: N, 43.75; C, 28.12; H, 3.13. Found (%) N, 42.12; C, 28.37; H, 3.217. IR(KBr, ν_{max} , cm⁻¹): 3090 (N-H) 1522, 1368, (-NO₂), 1606, 1449 (triazole); ¹H NMR (CDCl₃, 500 MHz) δ : 2.60(s, 3H, CH₃), 1.95(s, 1H, NH); ¹³C NMR (CDCl₃, 125 MHz) δ : 151.90 (CNO₂), 137.16 (CCH₃), 10.16 (CH₃).

X-ray crystal structure determination: White crystals of 4-methyl-5-nitro-1,2,3-triazole were recrystallized from 1,2-dichloroethane to give satisfactory crystals for X-ray determination. The unit cell determination and data collection were performed with a MoK_{α} radiation ($\lambda = 0.71073$ Å) on a Bruker Smart APEX-CCD diffractometer equipped with a ϕ - ω scan mode in the range of $3.16 \le \theta \le 25.09^\circ$ at 296(2) K. A total of 5062 reflections were collected with 982 unique ones (Rint = 0.0170), of which 982 observed reflections with $I > 2\sigma(I)$ were used in the succeeding refinements. Acrystal with dimensions of $0.31 \times 0.23 \times 0.17$ mm was used. Diffraction data were collected for 878 unique reflections with $-8 \le h \le 10$, $-11 \le k \le 11$ and $-15 \le 1 \le 13$. Absorption correction was not used. The structure was solved by direct methods using SHELXS program of the SHELXL-97 package and refined with SHELXL package7.8. The final refinement was performed by full-matrix least-squares method with anisotropic thermal parameters on F² for the non-hydrogen atoms. Crystal data and refinement results are summarized in Table-1. Crystallographic data for the structural analysis have beendeposited in the Cambridge Crystallographic Data Center, CCDC No. 932815.

RESULTS AND DISCUSSION

The selected bond lengths and bond angles are given in Table-2. A displacement ellipsoid plot with atomic numbering scheme and a perspective view of the crystal in a unit cell are shown in Figs. 1 and 2, respectively.

Fig. 1. Molecular structure for the title compound with atomic numbering scheme

TABLE-1				
CRYSTAL DATA AND STRUCT	URE REFINEMENT DETAILS			
Formula	$C_3H_4N_4O_2$			
Formula weight	129.11			
T (K)	296(2)			
λ(Å)	0.71073			
Crystal system	Orthorhombic			
Space group	Pbca			
a (Å)	8.7139(17)			
b (Å)	9.8198(19)			
c (Å)	12.889(3)			
α (°)	90			
β (°)	90			
γ(°)	90			
Volume (Å ³)	1102.9(4)			
Z	8			
$Dc (g/cm^3)$	1.555			
F (000)	536			
θ range/(°)	3.16 to 25.09			
Reflections collected/unique	5062 / 982			
Refinement method	Full-matrix least-squares on F ²			
GOF on F ²	1.093			
Final R indexes $(I > 2\sigma(I))$	$R_1 = 0.0490, wR_2 = 0.1468$			
Final R indexes (all data)	$R_1 = 0.0527, wR_2 = 0.1535$			
Largest diff peak and hole (e Å ⁻³)	0.573 and -0.491			

Fig. 2. View of crystal packing down the b axis for the title compound

TABLE-2 SELECTED BOND LENGTHS (Å) AND BOND ANGLES (°) FOR THE TITLE COMPOUND						
Bond	Dist.	Bond	Dist.	Bond	Dist.	
N(1)-O(2)	1.216(3)	N(2)-C(1)	1.347(3)	C(1)-C(2)	1.369(3)	
N(1)-O(1)	1.230(2)	N(3)-N(4)	1.342(2)	C(2)-C(3)	1.480(3)	
N(1)-C(1)	1.425(3)	N(3)-H(3)	0.8600	C(3)-H(3A)	0.9600	
N(2)-N(3)	1.291(2)	N(4)-C(2)	1.337(2)	C(3)-H(3B)	0.9600	
Angle	(°)	Angle	(°)	Angle	(°)	
O(2)-N(1)-O(1)	124.44(19)	C(2)-N(4)-N(3)	112.00(16)	C(2)-C(3)-H(3A)	109.5	
O(2)-N(1)-C(1)	117.82(19)	N(2)-C(1)-C(2)	110.81(17)	C(2)-C(3)-H(3B)	109.5	
O(1)-N(1)-C(1)	117.72(19)	N(2)-C(1)-N(1)	120.42(18)	H(3A)-C(3)-H(3B)	109.5	
N(3)-N(2)-C(1)	107.44(16)	C(2)-C(1)-N(1)	128.76(18)	C(2)-C(3)-H(3C)	109.5	
N(2)-N(3)-N(4)	107.70(16)	N(4)-C(2)-C(1)	102.04(16)	H(3A)-C(3)-H(3C)	109.5	
N(2)-N(3)-H(3)	126.1	N(4)-C(2)-C(3)	123.82(19)	H(3B)-C(3)-H(3C)	109.5	
N(4)-N(3)-H(3)	126.1	C(1)-C(2)-C(3)	134.13(19)			

TABLE-3 SELECTED TORSION ANGLES (°)				
Angle	(°)	Angle	(°)	
C(1)-N(2)-N(3)-N(4)	0.0(2)	O(1)-N(1)-C(1)-C(2)	173.8(2)	
N(2)-N(3)-N(4)-C(2)	0.1(2)	N(3)-N(4)-C(2)-C(1)	-0.2(2)	
N(3)-N(2)-C(1)-C(2)	-0.1(2)	N(3)-N(4)-C(2)-C(3)	179.3(2)	
N(3)-N(2)-C(1)-N(1)	-179.38(17)	N(2)-C(1)-C(2)-N(4)	0.2(2)	
O(2)-N(1)-C(1)-N(2)	171.98(19)	N(1)-C(1)-C(2)-N(4)	179.34(18)	
O(1)-N(1)-C(1)-N(2)	-7.1(3)	N(2)-C(1)-C(2)-C(3)	-179.1(2)	
O(2)-N(1)-C(1)-C(2)	-7.1(3)	N(1)-C(1)-C(2)-C(3)	0.0(4)	

In the crystal, the bond lengths N(1)-C(1), N(2)-C(1), N(4)-C(2) was 0.1425(3) Å, 0.1347(3) Å, 0.1337(2) Å, respectively, which were longer than C-C single bond (0.1273 Å) and shorter than C-C double bond (0.1471 Å) (Table-2). Furthermore, the methyl groups and nitryl on C3 and N1 deviate from the planarity of the 1,2,3-triazole ring only slightly, for example the torsion angle of $179.3(2)^{\circ}$, -179.38(17) for N(3)-N(4)-C(2)-C(3) and N(3)-N(2)-C(1)-N(1), respectively, were twisted 0.7 and 0.62 out of plane. Of notable interest are all atoms of the title molecular on one and the same plane nearly (Table-3). The results show that there is one of conjugate system between 1,2,3-triazole ring and the bond of C(2)-C(3) and C(1)-N(1), result that the title molecular shows a good aromaticity and stability.

Conclusion

4-Methyl-5-nitro-1,2,3-triazole was synthesized and characterized by IR, $^{13}\mathrm{C}$ NMR, MS and elemental analysis. X-ray

single-crystal diffraction analysis indicated that the title molecule shows a good aromaticity, the C and N atom are involved in same plan with the 1,2,3-triazole ring, which further stabilize the structure.

REFERENCES

- 1. M.B. Talawar, R. Sivabalan, N. Senthilkumar, G. Prabhu and S.N. Asthana, *J. Hazard. Mater.*, **113**, 11 (2004).
- 2. Z.-Y. Yan, Y.-B. Zhao, M.-J. Fan, W.-M. Liu and Y.-M. Liang, *Tetrahedron*, **61**, 9331 (2005).
- 3. R. Wang, H. Gao, C. Ye and J.M. Shreeve, Chem. Mater., 19, 144 (2007).
- 4. Z.-Y. Wang, Chinese J. Energ. Mater., 11, 227 (2003).
- 5. K.T. Finlty, Triazole-1,2,3 in Chemistry of Heteroccklic Compounds (1980).
- 6. H. Huo, B.-Z. Wang and Q. Liu, Chem. Reagent, 31, 490 (2009).
- 7. G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany (1997).
- G.M. Sheldrick, SHELXTS-97, Program for Crystal Structure Solution, University of Göttingen, Germany (1997).