

Synthesis and Antibacterial Assay of 9-Substituted Aryl-1,8-dioxo-octahydroxanthenes

Yellajyosula Lakshmi Narasimha Murthy^{1,*}, Palla Mahesh^{1,2}, Bhoomireddy Rama Devi², L.K. Durgeswarai¹ and Palla Mani¹

¹Deptartment of Organic Chemistry, Andhra University, Visakhapatnam-530 003, India ²Deptartment of Chemistry, Jawaharlal Technological University, Kukatpally, Hyderabad-500 085, India

*Corresponding author: E-mail: murthyyln@gmail.com

Received: 1 August 2013;

Accepted: 15 October 2013; Published online: 16 July 2014;

AJC-15531

The present report highlights the heterogeneous catalytic activity of nano copper ferrite for the one pot synthesis of 9-substituted aryl-1,8dioxo-octahydroxanthenes when dimedone reacts with various aromatic aldehydes under solvent free conditions, catalyzed by nano catalyst. The main advantageous of this protocol includes excellent yields, mild reaction conditions and short reaction times.

Keywords: Nano copper ferrite, One-pot synthesis, Solvent free conditions, Xanthenes, Antibacterial assay, Docking.

INTRODUCTION

Xanthene and its derivatives are an important class of organic molecules because they have wide range of biological and pharmaceutical properties such as antibacterial¹, antiviral² and these are being utilized as antagonists for paralyzing action of zoxazolamine³ and in photodynamic therapy^{4,5}. Furthermore, these compounds can be used as dyes in laser technologies and pH sensitive fluorescent materials for visualization of bio-molecules⁶. In particular, xanthenediones constitute a key structural motif in a number of natural products⁷⁻⁹ and have been used as versatile synthons because of the inherent reactivity of inbuilt pyran ring¹⁰. Synthesis of xanthenediones is a continuing hot topic because these moieties are active pharmaceutical ingredients (API's) and also valuable reactive intermediates for both synthetic and medicinal chemists.

A survey of the literature reveals that various methods have been reported for preparation of xanthene derivatives. The classical method for the synthesis of 9-substituted aryl-1,8-dioxo-octahydroxanthenes involves the condensation of appropriate active methylene compounds with various substituted aromatic aldehydes. For this purpose, two molecules of dimedone (5,5-dimethyl-1,3-cyclohexane) was reacted with various aromatic aldehydes¹¹ by using different Lewis acid catalysts such as triethylbenzyl ammonium chloride¹², *p*dodecyl benzenesulfonic acid¹³, diammonium hydrogen phosphate¹⁴ under various conditions, sulfonic acid under ultrasonic irradiation¹⁵, ionic liquids¹⁶, Ambedrlyst-1s¹⁷, NaHSO₄-SiO₂ or silica chloride¹⁸, phosphomolybdic acid supported on silica gel¹⁹, man-sized MCM-41-SO₃H under ultrasonic irradiation²⁰, sulfonic acid on silica gel²¹, Dowex-50 W ion exchange resin under solvent-free conditions²², HClO₄-SiO₂²³, ZnO and ZnOacetyl chloride²⁴ and heteropoly acid supported MCM-41²⁵.

However, the methods reported, serve their best but still suffer from certain drawbacks such as long reaction times, low yields, use of toxic transition metals as catalysts, use of hazardous organic solvents and tedious workup procedures. Recently, because of the unique properties of nano particles, synthetic chemists focused on nano-catalysts. Therefore, synthesis and characterization of catalysts with lower dimensions have become the most interesting topic of research. Moreover, due to quantum size effects, nanometer-sized particles may exhibit unique properties for a wide range of applications. Keeping the above facts and as a part of our ongoing research, herein we report, first time, use of nano copper ferrite as heterogeneous support for the synthesis of 9-substituted aryl-1,8dioxo-octahydroxanthenes. This method offers advantageous such as short reaction time, recyclability of the catalyst and easy to work-up procedure.

EXPERIMENTAL

Preparation of nano copper ferrite: The catalyst was synthesized²⁶ by citrate gel precursor method. Copper(II) nitrate and iron(III) nitrate were taken in stoichiometric proportions and minimum amount of deionized water was added to produce clear cationic solution. Citric acid solution was then prepared in stoichiometric ratio. Aqueous solutions with molar ratio of metal iron solutions were mixed and citric acid was added in equimolar ratio to the above mixed metal iron solution. pH was adjusted to 7 by adding ammonia solution. The aqueous

mixture was heated up to 90 °C to evolve reddish brown gases and became dried gel, which was finally treated at 350 °C for 1 h to observe whether the dry gel burnt out in self propagating manner to form loose powder. The finely powdered particles were calcinated at 600 °C. The powder was then characterized.

General method of synthesis of 9-substituted aryl-1,8dioxo-octahydroxanthenes: A mixture of 5,5-dimethyl-1,3cyclohexanedione (2eq) (1), substituted aromatic aldehydes (1 eq) (2) and CuFe₂O₄ nano particles (15 mol %) were stirred at 120 °C in an oil bath for the time indicated in Table-1. The completion of the reaction was monitored by TLC. After completion of the reaction, the reaction was cooled to room temperature and a solid product was obtained. The product was dissolved in methanol and the catalyst was recovered by magnetization. The crude products were further purified by recrystallization from ethanol. All the synthesized products were characterized by IR, NMR and Mass spectroscopic data and their melting points were compared with authentic samples. The reaction times, percentage of yield and m.p.'s were presented in Table-1. The spectral data of the synthesized compounds (3a-3j) are given below.

Spectral data for selected compounds

Compound (3a): 9-Phenyl-3,3,6,6-tetramethyl-1,2,3,4,5, 6,7,8-octahydroxanthene-1,8-dione m.p. 204-205 °C. IR (KBr, v_{max} , cm⁻¹): 2954,1664,1364,1199. ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.09 (m, 5H, ArH), 4.74 (s, 1H, C9-H), 2.46 (s, 4H, 2CH₂), 2.19 (q, *J* = 16.5 Hz, 4H, 2CH₂), 1.10 (s, 6H, 2CH₃), 0.98 (s, 6H, 2C_{H3}). ¹³C NMR (100 MHz, CDCl₃): δ 196.2, 162.3, 143.8, 128.4, 127.6, 115.2, 50.6, 40.7, 32.0, 31.6, 29.3, 27.2. MS (*m/e*): 350 (M⁺). Anal. Calcd for C₂₃H₂₆O₃: C, 78.83; H, 7.47. Found: C, 78.96; H, 7.40.

Compound (3b): 9-(4-Methylphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8-octahydroxanthene-1,8-dione. m.p. 215-217 °C. IR (KBr, v_{max} , cm⁻¹): 3030, 2980, 1685, 1660, 1620, 1490, 1365, 1200, 1135, 1000, 850, 840. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (d, *J* = 8.0Hz, 2H, Ar H), 7.01 (d, *J* = 8.0 Hz, 2H, ArH), 4.70 (s, 1H, CH), 2.45 (s, 4H, 2CH₂), 2.23 (s, 3H, CH₃), 2.19 (q, *J* = 16.3 Hz, 4H, 2CH₂), 1.09 (s, 6H, 2CH₃), 0.99 (s, 6H, 2CH₃).¹³C NMR (100 MHz, CDCl₃): δ 196.4, 162.1, 141.1, 135.7, 128.7, 128.1,115.7, 50.7, 40.8, 32.1, 31.3, 29.2, 27.3, 20.9. MS (*m/e*): 364 (M⁺). Anal.Calcd for C₂₄H₂₈O₃: C, 79.09; H, 7.74. Found: C, 79.16; H 7.49.

Compound (3c): 9-(4-Hydroxyphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8-octahydroxanthene-1,8-dione. m.p. 220-222 °C. IR (KBr, v_{max} , cm⁻¹): 3324, 2959, 1652, 1617, 1363. ¹H NMR (400 MHz, CDCl₃): δ 7.10 (d, J = 8.4 Hz, 2H, Ar H), 6.60 (d, J = 8.4 Hz, 2H, Ar H), 5.72 (s, 1H, OH, D₂O exchangeable), 4.67 (s, 1H, CH), 2.45 (s, 4H, 2CH₂), 2.20 (q, J = 16.2 Hz, 4H, 2CH₂), 1.09 (s, 6H, 2CH₃), 0.99 (s, 6H, 2CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 195.8, 162.5, 140.7, 135.5, 128.2, 128.0,115.2, 50.6, 40.1, 32.4, 31.2, 29.1, 27.2. MS (*m/e*): 366 (M⁺). Anal.Calcd for C₂₃H₂₆O₄: C, 75.38; H, 7.15. Found: C, 75.16; H 7.29.

Compound (3g): 9-(4-Bromophenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8-octahydroxanthene-1, 8-dione. m.p. 230-232 °C; IR (KBr, ν_{max} , cm⁻¹): 3030, 1624, 1586; ¹H NMR (400 MHz, CDCl₃): δ 6.47 (1H, s, CH),7.25-8.34 (m, 4H, ArH.); ¹³C NMR (CDCl₃): δ_C 37.46,116.64, 118.02, 120.21, 122.39, 124.38, 126.93, 128.91,129.12, 129.88, 131.03, 131.23, 131.58, 143.98, 148.65; MS (*m/e*, %) 437 (20), 281 (100), 252 (40), 75 (15).

Compound(3i): 9-(4-Nitrophenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8-octahydroxanthene-1,8-dione m.p. 219-221 °C. IR (KBr, v_{max} , cm⁻¹): 2958, 1670, 1650, 1520, 1362, 1206, 870. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.0 Hz, 2H, ArH), 7.46 (d, J = 8.0 Hz, 2H, ArH), 4.82 (s, 1H, CH), 2.49 (s, 4H, 2CH₂), 2.21 (q, J = 16.2 Hz, 4H, 2CH₂), 1.12 (s, 6H, 2CH₃), 0.99 (s, 6H, 2CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 196.1,162.9, 151.3, 146.6, 129.4, 123.5, 114.5, 50.5, 40.8, 32.3, 32.1, 29.6,29.2, 27.2. MS (m/e): 395 (M⁺). Anal. Calcd for C₂₃H₂₅NO₅: C, 69.85; H, 6.37; N, 3.54. Found: C, 69.96; H 6.49; N, 3.43.

Antibacterial assay: Antibacterial studies were carried out on human pathogenic bacteria. *Salmonella typhi, Vibrio cholerae, Shigella dysenteriae* and *Enterococcus faecalis*, which were clinical isolates collected at *King George* Hospital, Visakhapatnam, India. *S. typhi, V. cholerae, S. dysenteriae* and *E. faecalis* are gastrointestinal pathogens. Antibacterial activity was performed by agar well diffusion method and minimum inhibitory concentration (MIC)^{27,28}. Agar well diffusion method was performed to determine the inhibitory zones in millimeter (mm). MIC was determined by broth dilution assay and the experiment was conducted between 1-1000 µg/mL of compound concentration. Ciprofloxacin (antibiotic) and DMSO were used as positive control and negative control respectively²⁹.

Molecular docking studies: X-ray crystal structures of proteins used in docking studies are obtained from Protein Data Bank. Topoisomerase I (PDB ID 1T8I) was used in docking studies. Co-cystalized ligands and water molecules are removed from target protein using Argus lab. Ligands are prepared using Chemoffice (Cambridge). Energy minimization was done using molecular mechanics. The minimized was executed until root mean square value reached smaller than 0.001 Kcal/mol. Such energy minimized ligands and receptor used for docking studies using GEMDOCK (Generic Evolutionary Method for molecular docking) is a generic evolutionary method with an empirical scoring function for the protein-ligand docking, which is a problem of paramount importance in structure-based drug design, combines both continuous and discrete search mechanisms. A population size of 300 with 70 generations and three solutions were used, in docking accuracy setting^{30,31}.

RESULTS AND DISCUSSION

In continuation of our interest in the area of clean synthesis, under solvent-free conditions, for the development of new synthetic methodologies herein, we report a simple, efficient and one-pot reaction of dimedone and aldehydes using nano copper ferrite at 120 °C for the preparation of 9-substituted aryl-1,8-dioxo-octahydroxanthenes (**3a-3j**) in high yields (**Scheme-I**) and the results were presented in Table-1.

Initially, a blank reaction using benzaldehyde and dimedone (mole rate 1:2) at 120 °C without nano copper ferrite was performed in order to establish the real effectiveness of the catalyst and the results showed that desired product was not formed even after 12 h of heating. We then focused to optimize catalyst loading percentage. In order to evaluate the most appropriate

IABLE-1 SYNTHESIS OF 9-ARYL-1,8-DIOXO-OCTAHYDROXANTHENES USING NANO COPPER FERRITE					
Product	R	Time (min)	Yield (%)	m.p. (°C)	Lit. m.p. (°C)
3 a	-H	5	95	202-204	202-204 ²³
3b	-CH ₃	15	85	215-217	217-218 ²³
3c	$-CH(CH_3)_2$	25	88	238-239	236-239 ³²
3d	-OH	30	90	243-245	246-248 ¹²
3e	-OCH ₃	30	80	230-232	242-244 ²³
3f	-NMe ₂	15	90	224-226	226-228 ²³
3g	-NEt ₂	17	88	228-230	-
3h	-F	14	91	223-225	224-226 ³³
3i	-Br	12	92	230-232	234-236 ³³
3ј	$-NO_2$	10	95	219-221	226-228 ²³

Scheme-I: Synthesis of 9-substituted aryl-1,8-Dioxo-octahydroxanthenes employing reusable Nano copper ferrite as catalyst

catalyst percentage, a model reaction using benzaldehyde and dimedone (mole ratio1:2) was carried out using 0, 5, 10, 15 and 20 mol % of Nano copper ferrite at different temperatures under solvent-free conditions (Table-2). It was found that 15 mol % of Nano copper ferrite showed high yield in lesser reaction time at 120 °C (Table-2).

TABLE- 2 OPTIMIZED CONDITIONS FOR CATALYST LOADING AT120 °C				
Product	Catalyst (mol %)	Yield	Time (min)	
R	0	0	12 (h)	
	5	92	8	
ÎĬÎ	10	93	6	
1112	15	95	5	
× • • • • • •	20	94	7	

After completion of the reaction, the catalyst was recovered by magnetization and washed with diethyl ether and the recovered catalyst was reused for few more cycles. During washing with the solvent, it was clearly evident that there was no leaching of catalyst and was confirmed by performing the reaction with the filtrate. The leaching of metal after three cycles was found to be 0.17 %. From our investigations, we observe that nano catalyst shows excellent to good reactivity with promising yields even for the next three cycles in the same reaction. Since, there was no observable loss in the yield percentage; further reusability of nano catalyst was not needed. The results are listed in Table-3.

TABLE- 3 REUSABILITY OF NANO CATALYST				
S. No.	Catalyst recovery (%)	Yield (%)		
1	-	95		
2	97	89		
3	86	82		
4	80	78		

Under the optimized conditions, aromatic aldehyde (**2a-2j**) containing electron donating as well as electron withdrawing groups with different substitution patterns were effectively cyclized to give 9-aryl substituted 1,8-dioxo-octahydroxanthenes (Table-1).

From Table-1, it is observed that the presence of electron withdrawing groups on benzaldehyde (compounds **3f** and **3j**) require less reaction times and produce high yields than electron donating groups on benzaldehyde (compounds **3b**, **3c**, **3e**, **3f** and **3g**). The presence of electron withdrawing group accelerates the formation of carbocation at the carbonyl carbon of benzaldehyde. Interestingly, the basic molecule itself, without any substitution, reacts in presence of catalyst leading to the formation of the product in good yield (90 %). The formation of xanthene moiety is confirmed by spectroscopic methods. In IR spectra stretching frequencies between 1670-1624 cm⁻¹ correspond to the carbonyl group of xanthenes. In ¹H NMR spectra, chemical shift at δ 4.82-4.67 corresponds to the -CH proton of target molecule.

Antimicrobial activity: To explore the bioactive lead molecules, the above synthesized compounds were evaluated for their antibacterial activity on human pathogens *viz.*, *S. typhi*, *V. cholerae*, *S. dysentriae*, *E. faecalis* at Department of Organic Chemistry, Microbial Laboratories, A.U, adopting well diffusion method and the results are tabulated in Table-4.

Xanthene derivatives (3a-3j) showed significant antibacterial activity on human pathogens. Zone of inhibitions were observed between 6-15 mm. Among the series of compounds, compound 3f showed highest zone of inhibition (15 mm) and low MIC (1 µg/mL) on Vibrio cholerae. Compound 3f (N,Ndiethyl) showed good activity on both gram positive and gram negative bacteria. The pathogens S. typhi, S. dysenteria, E. faecalis showed resistance to synthesized xanthenes analogues compared to V. cholerae. Some of the analogues showed comparable activity with ciprofloxacin. Further molecular docking studies performed on X ray crystal structure of topoisomerase, which is one of the target sites for cytotoxic activity. The results were depicted in Table-5. In silico studies were correlated with in vitro studies. The binding energies or dock energies of Xanthene derivatives (3a-3j) found to be between 119.8-138.5 Kcal/mol. Binding energy is inversely proportional to binding affinity. Compound 3f binds with high affinity than other synthesized compounds and its binding interactions with glutamic acid⁴⁹⁴, threonine⁵⁰¹, lysine⁴⁹³ residues of topoisomerase

			TABLE-4			
	ANTI-MICROBIA	AL ACTIVITIES OF	9-ARYL-1,8-DIOXO-OC	FAHYDROXANTHENES		
	DEF	RIVATIVES AGAIN	ST VARIOUS HUMAN PA	ATHOGENS		
S.No	Compound	S. typhi	V. Cholerae	S. dysenteriae	E. faecalis	
1	3a	9/100	8/100	11/100	9/1000	
2	3b	9/1000	9/1000	10/>1000	9/>1000	
3	3c	10/100	10/100	09/100	9/1000	
4	3d	9/10	10/100	11/100	8/100	
5	3e	10/100	11/100	10/1000	10/>1000	
6	3f	14/10	15/1	14/10	13/100	
7	3g	10/1000	11/1000	11/1000	6/1000	
8	3h	10/100	10/100	9/100	10/1000	
9	3i	9/1000	10/1000	8/100	ND	
10	3ј	13/10	10/100	10/100	10/100	
11	Antibiotic	17/10	18/1	16/10	15/10	

Ciprofloxacin for bacteria; * 50 µg compound per well; ND: Not Determined

$\begin{array}{c c c c c c c } \hline Compound & Binding energy (-Kcal/mol) & Interacted amino acids \\ I YS-493 & IYS-493 & IYS-493 & IYS-493 & IYS-493 & IYS-508 & ARG-488 & TYR-508 & ARG-488 & TYR-537 & IYS-532 & IYS-532 & IYS-532 & IYS-603 & ARG-590 & IYS-603 $	TABLE-5 MOLECULAR DOCKING STUDIES OF XANTHENE DERIVATIVES ON TOPOISOMERASE I				
Compound (-Kcal/mol) amino acids 3a -123.5 GLU-494 ARG-508 3b -128.8 TYR-537 LYS-532 3c -127.3 GLN-599 LYS-603 3d -119.8 THR-591 THR-718 3e -133.1 ASN-419 GLU-418 3f -138.5 THR-501 LYS-532 3g -129.0 TYR-537 LYS-532 3j -128.1 GLV-494 GLV-494 3f -138.5 THR-501 LYS-532 3g -129.0 TYR-537 LYS-532 3j -128.1 GLV-494 3f -138.0 THR-501 LYS-532 3j -138.0 TYR-537 LYS-532 3j -138.0 GLY-531 ARG-488 3h -138.0 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738	Compound	Binding energy	Interacted		
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	Compound	(-Kcal/mol)	amino acids		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			LYS-493		
ARG-508 ARG-488 3b -128.8 TYR-537 LYS-532 LEU-602 3c -127.3 GLN-599 3d -127.3 GLN-599 3d -119.8 THR-591 3d -119.8 THR-591 3e -133.1 ASN-419 GLU-494 GLU-494 3f -138.5 THR-501 LYS-532 PHE-529 J 3g -128.1 GLY-531 3h -138.0 EU-487 3h -138.0 GLY-531 TYR-537 LYS-734 PRO-739 VAL-738 PRO-739 VAL-738	3a	-123.5	GLU-494		
$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $			ARG-508		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-128.8	ARG-488		
LYS-532 LEU-602 3c -127.3 GLN-599 LYS-603 ARG-590 3d -119.8 THR-591 THR-718 ARG-375 3e -133.1 ASN-419 GLU-494 3f -138.5 THR-501 LYS-532 3g -129.0 TYR-537 LYS-532 3j -128.1 GLY-531 ARG-488 BARG-488 LEU-487 3h -138.0 GLY-531 TYR-537 LYS-734 BARG-488 LEV-487 3h -131.9 PRO-739 VAL-738	3b		TYR-537		
$\begin{array}{c cccc} & LEU-602 \\ \hline 3c & -127.3 & GLN-599 \\ LYS-603 \\ \hline \\ & & & & \\ & & $			LYS-532		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			LEU-602		
LYS-603 ARG-590 3d -119.8 THR-591 THR-718 ARG-375 3e -133.1 ASN-419 GLU-418 GLU-494 3f -138.5 THR-501 LYS-532 3g -129.0 TYR-537 LYS-532 3j -128.1 GLY-531 ARG-488 PHE-529 3j -128.1 GLY-531 ARG-488 LEU-487 3h -138.0 GLY-531 TYR-537 LYS-734 PRO-739 VAL-738	3c	-127.3	GLN-599		
3d -119.8 ARG-590 THR-591 THR-591 THR-718 3e -133.1 ARG-375 ARG-375 3e -133.1 ARG-375 ASN-419 GLU-418 3f -138.5 THR-501 LYS-532 3g -129.0 TYR-537 LYS-532 3j -128.1 GLY-531 ARG-488 3h -138.0 EU-487 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738			LYS-603		
3d -119.8 THR-591 THR-718 ARG-375 3e -133.1 ASN-419 GLU-418 3f -138.5 THR-501 LYS-493 3g -129.0 TYR-532 LYS-532 3g -128.1 GLY-531 ARG-488 3h -138.0 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738			ARG-590		
THR-718 ARG-375 3e -133.1 ARG-375 3f -138.5 GLU-418 3f -138.5 THR-501 LYS-493 LYS-532 PHE-529 3j -128.1 GLY-531 ARG-488 LEU-487 ARG-488 3h -138.0 GLY-531 3i -131.9 PRO-739 VAL-738 PRO-739	3d	-119.8	THR-591		
ARG-375 3e -133.1 ASN-419 GLU-418 3f -138.5 THR-501 LYS-493 3g -129.0 TYR-537 LYS-532 3g -129.0 TYR-537 LYS-532 3j -128.1 GLY-531 ARG-488 3h -138.0 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738			THR-718		
3e -133.1 ASN-419 GLU-418 3f -138.5 THR-501 LYS-493 3g -129.0 TYR-537 LYS-532 3g -129.0 TYR-537 LYS-532 3j -128.1 GLY-531 ARG-488 3h -138.0 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738		-133.1	ARG-375		
GLU-418 GLU-418 3f -138.5 GLU-494 J -138.5 THR-501 LYS-493 LYS-532 LYS-532 Jg -129.0 TYR-537 LYS-532 PHE-529 PHE-529 Jj -128.1 GLY-531 ARG-488 LEU-487 Jh -138.0 GLY-531 TYR-537 LYS-734 Ji -131.9 PRO-739 VAL-738 VAL-738	3e		ASN-419		
$\begin{array}{c c} & & & & & & & & & \\ \textbf{3f} & -138.5 & & & & & \\ \textbf{1} & & & & & & \\ \textbf{3g} & -129.0 & & & & & \\ \textbf{3g} & -129.0 & & & & & \\ \textbf{1} & & & & & & \\ \textbf{3g} & -128.1 & & & & & \\ \textbf{3h} & -128.1 & & & & & \\ \textbf{3h} & -138.0 & & & & & \\ \textbf{1} & & & & & & \\ \textbf{3h} & -138.0 & & & & & \\ \textbf{3h} & -131.9 & & & & & \\ \textbf{3i} & -131.9 & & & & \\ \textbf{3k} & -131.9 & & & & \\ \textbf{3k} & -131.9 & & \\ \textbf{3k} & -131$			GLU-418		
3f -138.5 THR-501 LYS-493 3g -129.0 TYR-537 LYS-532 3j -128.1 GLY-531 ARG-488 3h -138.0 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738			GLU-494		
LYS-493 LYS-532 3g -129.0 TYR-537 LYS-532 PHE-529 3j -128.1 GLY-531 ARG-488 LEU-487 3h -138.0 GLY-531 TYR-537 LYS-734 3i -131.9 PRO-739 VAL-738	3f	-138.5	THR-501		
3g -129.0 LYS-532 3g -129.0 TYR-537 LYS-532 PHE-529 3j -128.1 GLY-531 ARG-488 LEU-487 3h -138.0 GLY-531 TYR-537 TYR-537 3i -131.9 PRO-739 VAL-738 VAL-738			LYS-493		
3g -129.0 TYR-537 LYS-532 3j -128.1 GLY-531 ARG-488 3h -138.0 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738			LYS-532		
LYS-532 PHE-529 3j -128.1 GLY-531 ARG-488 LEU-487 GLY-531 TYR-537 LYS-734 3i -131.9 PRO-739 VAL-738	3g	-129.0	TYR-537		
3j -128.1 PHE-529 GLY-531 ARG-488 3h -138.0 LEU-487 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738			LYS-532		
3j -128.1 GLY-531 ARG-488 3h -138.0 EEU-487 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738			PHE-529		
ARG-488 LEU-487 3h -138.0 GLY-531 TYR-537 3i -131.9 PRO-739 VAL-738	Зј	-128.1	GLY-531		
3h -138.0 LEU-487 3h -138.0 GLY-531 TYR-537 TYR-537 3i -131.9 PRO-739 VAL-738 VAL-738			ARG-488		
3h -138.0 GLY-531 TYR-537 TYR-537 3i -131.9 PRO-739 VAL-738 VAL-738			LEU-487		
TYR-537 LYS-734 3i -131.9 PRO-739 VAL-738	3h	-138.0	GLY-531		
3i -131.9 PRO-739 VAL-738			TYR-537		
3i -131.9 PRO-739 VAL-738			LYS-734		
VAL-738	3i	-131.9	PRO-739		
			VAL-738		

are presented in Fig. 1. Compound **3f** can be a promising cytotoxic agent for therapy of microbial infections.

Conclusion

The CuFe₂O₄ nanoparticle catalyst plays a crucial role in the success of the reaction. In the absence of the CuFe₂O₄ nano particles the reaction of 1,3-cyclohexanediones (1) and benzaldehyde derivative (2) was performed and no product was obtained, where as in the presence of catalyst, product was formed with a short reaction and the yields are promising. The crucial role of CuFe₂O₄ nanoparticles as a good catalyst

Fig. 1. Molecular docking of synthesized xanthone (3f) on topoisomerase I

was obviously revealed. Further the microbial investigations confirm that the N,N- dimethyl analogue (**3f**) is a promising lead molecule.

ACKNOWLEDGEMENTS

The authors are thankful to Defense Research and Development Organization, New Delhi for providing financial assistance. The authors are also grateful to the Committee on strengthening infrastructure for Science & Technology (COSIST) Labs, Andhra University for providing spectral data.

REFERENCES

- T. Hideo, Jpn. Tokkyo Koho JP 56,005,480 (1981); Chem. Abstr., 95, 80922b (1981).
- 2. R.W. Lambert, J.A. Martin, J.H. Merrett, K.E.B. Parkes and G.J. Thomas, *Chem. Abstr.*, **126**, 212377y (1997).
- 3. G. Saint-Ruf, Huynh-Trong-Hieu and J.-P. Poupelin, *Naturwissenschaften*, **62**, 584 (1975).
- 4. R.M. Ion, Prog. Catal., 2, 55 (1997).
- R.M. Ion, D. Frackowiak, A. Planner and K. Wiktorowicz, *Acta Biochim. Pol.*, 45, 833 (1998).
- 6. C.G. Knight and T. Stephens, *Biochemistry*, 258, 683 (1989).
- S. Hatakeyama, N. Ochi, H. Numata and S. Takano, J. Chem. Soc. Chem. Commun., 1202 (1988).
- 8. G.M. Cingolani, F. Gualtieri and M. Pigini, J. Med. Chem., **12**, 531 (1969).
- S. Ahadi, H.R. Khavasi and A. Bazgir, *Chem. Pharm. Bull. (Tokyo)*, 56, 1328 (2008).

- 10. C.N. O'Callaghan and T.B.H. McMurry, J. Chem. Res. (S), 78 (1997).
- 11. E.C. Horning and M.G. Horning, J. Org. Chem., 11, 95 (1946).
- 12. X.S. Wang, D.Q. Shi, Y.L. Li, H. Chen, X.Y. Wei and Z.M. Zong, *Arkivoc*, 117 (2005).
- 13. T.S. Jin, J.S. Zhang, J.C. Xiao, A.Q. Wang and T.S. Li, *Synlett*, 866 (2004).
- F. Darviche, S. Balalaei, F. Chadegani and P. Salehi, *Synth. Commun.*, 37, 1059 (2007).
- T.S. Jin, J.S. Zhang, A.Q. Wang and T.S. Li, *Ultrason. Sonochem.*, 13, 220 (2006).
- M. Dabiri, M. Baghbanzadeh and E. Arzroomchilar, *Catal. Commun.*, 9, 939 (2008).
- 17. B. Das, P. Thirupathi, I. Mahender, V.S. Reddy and Y.K. Rao, *J. Mol. Catal. Chem.*, **247**, 233 (2006).
- B. Das, P. Thirupathi, K.R. Reddy, B. Ravikanth and L. Nagarapu, *Catal. Commun.*, 8, 535 (2007).
- P. Srihari, S.S. Mandal, J.S.S. Reddy, R.S. Rao and J.S. Yadav, *Chin. Chem. Lett.*, **19**, 771 (2008).
- S. Rostamizadeh, A.M. Amani, G.H. Mahdavinia, G. Amiri and H. Sepehrian, *Ultrason. Sonochem.*, 17, 306 (2010).
- G.H. Mahdavinia, M.A. Bigdeli and Y.S. Hayeniaz, *Chin. Chem. Lett.*, 20, 539 (2009).

- 22. G.I. Shakibaei, P. Mirzaei and A. Bazgir, *Appl. Catal. A*, **325**, 188 (2007).
- S. Kantevari, R. Bantu and L. Nagarapu, J. Mol. Catal. Chem., 269, 53 (2007).
- 24. M.T. Maghsoodlou, S.M. Habibi-Khorassani, Z. Shahkarami, N. Maleki and M. Rostamizadeh, *Chin. Chem. Lett.*, **21**, 686 (2010).
- 25. G. Karthikeyan and A. Pandurangan, J. Mol. Catal. Chem., **311**, 36 (2009).
- Y.L.N. Murthy, B.S. Diwakar, B. Govindh, K. Nagalakshmi, I.V.K.A.S.I. Viswanath and R. Singh, J. Chem. Sci., 124, 639 (2012).
- 27. C. Perez, M. Pauli and P. Bazevque, *Acta Biologiae et Medicine Experimentalis*, **15**, 113 (1990).
- M.A. Pfaller, M. Castanheira, D.J. Diekema, S.A. Messer, G.J. Moet and R.N. Jones, J. Clin. Microbiol., 48, 1592 (2010).
- Clinical Laboratory Standards Institute Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically; Approved Standard M 07-A9, edn 9, vol. 32, No. 2, p. 12 (2012).
- 30. J.M. Yang, J. Comput. Chem., 25, 843 (2004).
- 31. J.M. Yang and C.C. Chen, Proteins, 55, 288 (2004).
- 32. A. Bekaert, J. Andrieux and M. Plat, Tetrahedron Lett., 33, 2805 (1992).
- K. Venkatesan, S.S. Pujari, R.J. Lahoti and K.V.C. Srinivasan, *Sono. Chem.*, **15**, 548 (2008).