

NOTE

Synthesis and Crystal Structural of 1,10-Phenanthroline Lead(II) Complex

DONG XIE^{*}, HUA CHENG and WEN-JIE BI

College of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, Anhui Province, P.R. China

*Corresponding author: E-mail: hxlw12@163.com

Received: 24 February 2014;	Accepted: 2 May 2014;	Published online: 5 July 2014;	AJC-15519
-----------------------------	-----------------------	--------------------------------	-----------

A novel lead(II) complex [Pb(phen)₂(NO₃)]·NO₃ has been synthesized, with 1,10-phenanthroline (phen) and nitrate (NO₃⁻) as ligands and characterized by IR spectra and single-crystal X-ray diffraction measurements. The crystal is monoclinic, space group P2(1)/n with unit cell parameters: a =16.6321(18)Å, b = 7.7550(8)Å, c = 18.0809(19)Å, $\alpha = 90^{\circ}$, $\beta = 98.2880(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 2307.8(4)Å³, Z = 4, Mr = 691.62, Dc = 1.991 Mg/cm³, $\mu = 7.366$ mm⁻¹, F(000) = 1328, T = 298(2) K, R = 0.0795, wR = 0.1980 for 4068 reflections with I > 2\sigma(I). In the molecular structure unit, lead(II) cation is coordinated by six donor atoms.

Keywords: Lead(II) complex, 1,10-Phenanthroline, Crystal structure.

The organic lead compounds which are formed by nitrogenous ligands, have better biological and pharmacological activities and a wide range of applications in medicine, pesticides and analytical chemistry¹⁻⁶.

So we synthesized a lead(II) complex with 1,10-phenanthroline ligand. The structure of the complex were characterized by infrared and X-ray single crystal diffraction.

All the reagents were of AR grade and used without further purification. Infrared spectra were recorded with a Nicolet 380 FT-IR spectrophotometer on KBr disks. The X-ray structure was determined by Siemens SMART CCD area-detector diffractometer.

Synthesis: 15 mL ethanol solution of 1,10-phenanthroline (10 mmol) was, respectively added to 30 mL H₂O solution of Pb(NO₃)₂ (10 mmol) and *p-tert*-butyl benzoic acid-Na (10 mmol) under stirring for 3 h. After being filtered, the solution was stand at room temperature for 1 week. The product was colourless granular single crystals. Yield 35 %. IR (KBr, v_{max} , cm⁻¹): 3444, 3048, 1514, 1383, 1281, 849, 723.

Crystal structure determination: A single crystal of compound with dimensions of $0.45 \times 0.44 \times 0.40$ mm was selected for crystallographic data collection at 293(2) K and structure determination on a Seimens SMART CCD areadetector diffractometer with graphite-monochromatic MoK_{α} radiation ($\lambda = 0.71073$ Å). A total of 11285 reflections were collected in the range of $2.47^{\circ} \le \theta \le 25.02^{\circ}$, of which 4068 reflections were unique with $R_{int} = 0.0998$. Lp effects and empirical absorption were applied in data corrections. The strucutre was solved by direct methods and expanded using Fourier techniques. SHELXS-97 program system⁷ was used in the solution and refinement of the structure. The nonhydrogen atoms were refined anisotroically. Hydrogen atoms were added according to the theoretical model. The final fullmatrix least-squares refinement including 335 variable parameters for 4068 reflections with $I > 2\sigma(I)$ and gave the final R = 0.0795, wR = 0.1980. The weighting scheme was w = $1/[s^2(F_0^2) + (0.1470P)^2 + 0.0000P]$, P = $(F_0^2 + 2F_0^2)/3$. s = 1.026. The maximum and minimum peaks on the final diffe-

NO	N-HYDROGEN ATOMIC COO	TABLE-1 ORDINATES (× 10 ⁴) AND THI	ERMAL PARAMETERS (× 10) ³ Å ²)
Atom	Х	Y	Z	U(eq)
PB(1)	5028(1)	8714(1)	2394(1)	25(1)
N(1)	4473(8)	8421(15)	3651(7)	32(3)
N(2)	6003(7)	7534(16)	3420(6)	30(3)
N(3)	4591(7)	5487(16)	2247(7)	32(3)
O(1)	5664(8)	11626(16)	3120(7)	54(3)
O(2)	6336(7)	10636(16)	2286(7)	51(3)
O(3)	6703(10)	13050(20)	2822(11)	90(5)

TABLE-2 SELECTED BOND LENGTHS (Å) AND BOND ANGLES (°)								
Bond	Length	Angle	(°)	Angle	(°)			
PB(1)-N(2)	2.459(11)	N(2)-PB(1)-N(1)	65.4(4)	N(1)-PB(1)-O(1)	79.3(4)			
PB(1)-N(1)	2.583(13)	N(2)-PB(1)-N(3)	82.1(4)	N(3)-PB(1)-O(1)	156.9(4)			
PB(1)-N(3)	2.609(13)	N(1)-PB(1)-N(4)	136.9(4)	O(2)-PB(1)-O(1)	46.6(4)			
PB(1)-N(4)	2.611(13)	N(3)-PB(1)-N(4)	63.5(4)	O(2)-PB(1)-O(5)	145.2(4)			
PB(1)-O(2)	2.668(12)	N(2)-PB(1)-O(2)	78.8(4)	N(1)-PB(1)-O(6)	114.5(4)			
PB(1)-O(1)	2.746(12)	N(1)-PB(1)-O(2)	120.8(4)	O(2)-PB(1)-O(6)	119.1(4)			

rence fourier map are corresponding to 5.554 and -7.508 e/Å³ (CCDC No. 908533), respectively.

The atomic coordinates and thermal parameters are listed in Table-1 and the selected bond lengths and bond angles in Table-2, respectively. Fig. 1 shows diagram of the molecular structure of the complex $[Pb(phen)_2(NO_3)]$ ·NO₃. Fig. 2 shows a perspective view of the crystal packing in the unit cell. As shown in the Fig. 1, the center lead(II) cation is six-coordinated with four nitrogen atoms of the two phen ligands and two oxygen atoms of a nitrate anions.

Fig.1. Molecular structure of the complex [Pb(phen)₂(NO₃)]·NO₃

Fig. 2. Molecular packing arrangement in the unit cell

ACKNOWLEDGEMENTS

This work is financially supported by the National Natural Science Foundation of China (Nos. 20871039) and Key Discipline Foundation of Hefei Normal University.

REFERENCES

- 1. W.T. Deng, J.C. Liu and J. Cao, J. Coord. Chem., 66, 3782 (2013).
- 2. M. Sahin, N. Koçak, D. Erdenay and U. Arslan, *Spectrochim. Acta A*, **103**, 400 (2013).
- 3. N.M. El-Metwaly and M.S. Refat, Spectrochim. Acta A, 81, 519 (2011).
- 4. B.K. Singh, A. Prakash, H.K. Rajour, N. Bhojak and D. Adhikari, *Spectrochim. Acta A*, **76**, 376 (2010).
- 5. F.M. Raquel, E.G. David and B. Andres, Inorg. Chem., 48, 24 (2009).
- H. Khanmohammadi, R. Arabahmadi, M.H. Abnosi and H.R. Khavasi, *Polyhedron*, 26, 4963 (2007).
- 7. G.M.L. Sheldrick, SHELXS-97 and SHELXL-97, University of Gottingen, Germany (1997).