

NOTE

Isolation and Identification of Triterpenoids from Flowers of Lawsonia inermis

JING ZHANG¹, JIANG LIU^{2,*}, BIN XU³, YAN ZHUANG³, MASAYUKI YOSIKAWA³ and BINCAN YIN⁴

¹College of Horticulture, Sichuan Agricultural University, Ya'an 625014, P.R. China
²College of Agronomy, Sichuan Agricultural University, Wenjiang 611130, P.R. China
³Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
⁴College of Public Health, Dalian Medical University, Dalian 116044, P.R. China

*Corresponding author: Fax: +86 28 86290960; Tel: +86 28 86290870; E-mail: cat-liujiang@163.com

Received: 14 January 2014;	Accepted: 12 March 2014;	Published online: 5 July 2014;	AJC-15512			
A new oleanane-type triterpenoid, 2α , 3β -dihydroxyolean-18-en-28-oic acid (3) along with five known triterpenoids, β -sitosterol (1), oleanolic acid (2), crataegolic acid (4), alphitolic acid (5) and colosolic acid (6) were isolated from the flowers of <i>Lawsonia inermis</i> . Their structures were elucidated by spectroscopic analyses.						

Keywords: Lawsonia inermis, Oleanane-type triterpenoid, Lupane-type triterpenoid, Steroidal.

Lawsonia inermis is a much branched glabrous shrub or small tree, cultivated for its leaves although stem bark, roots, flowers and seeds have also been used in traditional medicine¹. The plant is reported to contain flavonoids, tannins and phenolic compounds, alkaloids, terpenoids, quinones, coumarins, xanthones and fatty acids^{2.4}. The plant has been reported to have analgesic, hypoglycemic, hepatoprotective, immunostimulant, antiinflammatory, antibacterial, antimicrobial, antifungal, antiviral, antiparasitic, antitrypanosomal, antidermatophytic, antioxidant, antifertility, tuberculostatic and anticancer properties^{2,5-8}. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products.

The flowers of *Lawsonia inermis* were collected in 2010 from India. The following instruments were used to obtain physical data: JEOL spectrometer (600 MHz for ¹H NMR, 150 MHz for ¹³C NMR) and ESI-MS spectra that recorded with Agilent 6510 Q-TOF LC/MS apparatus. The following instrumental conditions were used for column chromatography: Diaion HP-20, Chromatorex ODS DM1020T and Sephadex LH-20. Shimadzu LC-6AD liquid chromatograph; Shimadzu RID-10A refractive index detector; Preparative column: YMC-Pack ODS-A (250 × 20 mm i.d., S-5 μ m, 12 nm).

Extraction and Isolation: The flowers (2 Kg) of *Lawsonia inermis* was extracted three times with MeOH under reflux for 3 h. Evaporation of the solvent under reduced pressure provided the MeOH extract (636.5 g, 31.83 %). Part of the

MeOH extract (200 g) was partitioned into an EtOAc-H₂O (1:1, v/v) mixture to yield an EtOAc-soluble fraction (85.6 g, 13.62 %) and an aqueous fraction; Most of the EtOAc-soluble fraction (80.5 g) from the flower was subjected to ordinaryphase silica gel column chromatography {Hexane-EtOAc [(10: $1, v/v \rightarrow (2; 1, v/v) \rightarrow (1; 2, v/v) \rightarrow CHCl_3-MeOH [(10; 1, v/v) \rightarrow CHCl_3-MeOH [(10; 1, v/v) \rightarrow CHCl_3-MeOH])$ v/v] \rightarrow CHCl₃-MeOH-H₂O [(65: 35: 10, v/v/v, lower layer)] \rightarrow MeOH} to give 16 fractions. Fr. 11 (5.03 g) was subjected to ordinary-phase silica gel column chromatography {hexane- $CHCl_3 [(75:25, v/v) \rightarrow (50:50, v/v) \rightarrow (25:75, v/v)] \rightarrow CHCl_3$ \rightarrow CHCl₃-MeOH [(90: 10, v/v) \rightarrow (80: 20, v/v) \rightarrow (50: 50, v/v)] \rightarrow MeOH} to give 6 fractions {fr. 11-1 (10.7 mg), fr. 11-2 (2.1 mg), fr. 11-3 (9.8 mg), fr. 11-4 (78.7 mg), fr. 11-5 (154.5 mg), fr. 11-6 (206.7 mg) }. Fr. 11-1 (10.7 mg) was purified by HPLC [MeOH, HPLC column: YMC-Pack ODS-A(250 × 20 mm i.d., S-5 μ m, 12 nm)] to give β -sitosterol (1, 5.3 mg). Fr. 11-3 (9.8 mg) was purified by HPLC [MeOH, HPLC column: YMC-Pack ODS-A $(250 \times 20 \text{ mm i.d.}, \text{S}-5 \mu\text{m}, 12 \text{ nm})$] to give oleanolic acid (2, 6.5 mg). Fr. 11-5 (154.5 mg) was purified by HPLC [MeOH: H₂O (90: 10), HPLC column: YMC-Pack ODS-A (250 \times 20 mm i.d., S-5 μ m, 12 nm)] to give 2 α , 3 β dihydroxyolean-18-en-28-oic acid (3, 2.7 mg), crataegolic acid (4, 135.3 mg), alphitolic acid (5, 13.9 mg). Fr. 11-6 (206.7 mg) was purified by HPLC [MeOH: H₂O (90: 10), HPLC column: YMC-Pack ODS-A $(250 \times 20 \text{ mm i.d.}, \text{S}-5 \mu\text{m}, 12 \text{ nm})$] to give colosolic acid (6, 94.1 mg), crataegolic acid (4, 112.6 mg).

In a continuing search for bioactive or new secondary metabolites from traditional medicinal plants, we investigated methanol extracts of the flowers of *L. inermis*. We report here on the isolation and structure elucidation of a new oleananetype triterpenoid (**3**). The structure of compound **3** was elucidated on the basis of detailed spectroscopic analyses and by comparison with reported data. In addition, the known triterpenoids, β -sitosterol (**1**)⁹, oleanolic acid (**2**)¹⁰, crataegolic acid (**4**)¹¹, alphitolic acid (**5**)¹² and colosolic acid (**6**)¹³ were isolated (Fig. 1).

Fig. 1. structures of isolated triterpenoids 1-6.

Compounds 3 were isolated as amorphous powders, it showed positive optical rotation ($[\alpha]_D^{30} = +18.82^\circ$ in MeOH). The molecular formula were determined to be $C_{30}H_{48}O_4$ on the basis of a quasi-molecular ion at m/z 472 [M]⁺ by HR-ESI-MS. The IR spectrum showed strong absorption bands at 3388 and 1727 cm⁻¹, typical for the hydroxyl and carbonyl group, respectively. Detailed analyses of ¹H, ¹³C NMR spectra of **3** (Table-1) and comparison with 3β -acetoxy-olean-18-en-28-oic, morolic acid acetate¹⁴, particularly the ¹³C of double bond (δ 136.7, C-18; δ 133.5, C-19), showed that the basic skeletons were similar, compound 3 was formulated as olean-18-ene triterpenoid. Another important structure unit (δ 2.10, H-1 β ; δ 3.71, H-2; δ 2.99, H-3) was assembled using DQF and HMBC experience (Fig. 2). The ¹H NMR spectrum of **3** showed a signal at δ H 3.71 (1H, m) and δ H 2.99 (1H, d, J = 8.94) that suggested the presence of two OH at C-2 and C-3, as a result of the DQF correlation between H-1/H-2 and H-2/ H-3 and HMBC coss-peaks from H-3 to C-2 and H-23/24 to C-3. Additionally, comparison of spectral data of 3 with 2α , 3β -dihydroxyolean-28-oic acid, revealed that **3** differed from 2α , 3 β -dihydroxyolean-28-oic acid¹⁵ only in the absence of Gao *et al.*¹² double bond, so that, the structure of **3** was formulated as 2,3-dihydroxyolean-18-en-28-oic acid. The relative configuration of 3 was determined through the NOESY correlations (Fig. 2). between H-1 $\beta(\delta_{\rm H} 2.10, m)/\text{H}-2(\delta_{\rm H} 3.71, m)$, H-2($\delta_{\rm H}$ 3.71, m)/H₃-24 β ($\delta_{\rm H}$ 0.8, s), H-3 ($\delta_{\rm H}$ 2.99, d, J = 8.94)/H₃-23 α $(\delta_{\rm H} 1.01, s)$. Thus, the structure of **3** was established as 2α , 3β -dihydroxyolean-18-en-28-oic acid.

Fig. 2. Key 2D NMR correlation of compound 3

TABLE-1							
NMR DATA (CDCl ₃) OF COMPOUND 3							
Position	$\delta H (J \text{ in } Hz)$	δC, mult.	Position	$\delta H (J \text{ in Hz})$	δC, mult.		
1	2.10,m;0.88,m	46.8,CH ₂	16	1.20-1.64,0	33.4,CH ₂		
2	3.71,m	69.3,CH	17	-	47.9,qC		
3	2.99 (d,8.94)	83.9,CH	18	-	136.7,qC		
4	-	39.2,qC	19	5.20,s	133.5,CH		
5	1.39,0	55.6,CH	20	-	32.1,qC		
6	1.20-1.64,0	18.2,CH ₂	21	1.20-1.64,o	33.5,CH ₂		
7	1.20-1.64,0	34.4,CH ₂	22	1.20-1.64,o	33.4,CH ₂		
8	-	40.7,qC	23	1.01,s	28.4,CH ₃		
9	1.20-1.64,0	51.1,CH	24	0.80,s	16.5,CH ₃		
10	-	38.5,qC	25	0.93,s	19.7,CH ₃		
11	1.20-1.64,0	21.0,CH ₂	26	0.98,s	16.0,CH ₃		
12	1.20-1.64,0	25.9,CH ₂	27	0.78,s	14.9,CH ₃		
13	1.20-1.64,0	41.3,CH	28	-	179.8,qC		
14	-	42.6,qC	29	0.98,s	29.1,CH ₃		
15	1.20-1.64,0	29.3,CH ₂	30	1.00,s	30.4,CH ₃		
Note: "o"means "overlapped".							

REFERENCES

- 1. G. Chaudhary and S. Goyal, Int. J. Pharm. Sci. Drug Res., 2, 91 (2010).
- D. Prakash, S. Suri, G. Upadhyay and B.N. Singh, *Int. J. Food Sci.* Nutr., 58, 18 (2007).
- 3. P. Muthumani and R. Meera, Res. J. Pharm. Technol., 3, 736 (2010).
- J.-R. Liou, M. El-Shazly, Y.-C. Du, C.-N. Tseng, T.-L. Hwang, Y.-L. Chuang, Y.-M. Hsu, P.-W. Hsieh, C.-C. Wu, S.-L. Chen, M.-F. Hou, F.-R. Chang and Y.-C. Wu, *Phytochemistry*, 88, 67 (2013).
- A. Ostovari, S.M. Hoseinieh, M. Peikari, S.R. Shadizadeh and S.J. Hashemi, *Corros. Sci.*, **51**, 1935 (2009).
- A.B. Hsouna, M. Trigui, G. Culioli, Y. Blache and S. Jaoua, *Food Chem.*, 125, 193 (2011).
- A.E. Musa, A.T. Selvi, R. Aravindhan, B. Madhan, A. Fathima and J.R. Rao, *Am. Leather Chem. Assoc.*, **106**, 170 (2011).
- M. Trigui, A. Ben Hsouna, I. Hammami, G. Culioli, M. Ksantini, S. Tounsi and S. Jaoua, *Crop Prot.*, 45, 83 (2013).
- 9. Y.-C. Chang and F.-R. Chang, Chin. Chem. Soc., 47, 373 (2000).
- 10. S.H. Wu, Y.B. Ma, X.D. Luo and X.J. Hao, *Zhongcaoyao*, **33**, 679 (2002).
- J.C.A. Tanaka, G.J. Vidotti and C.C. Silva, J. Braz. Chem. Soc., 14, 475 (2003).
- 12. H.-Y. Gao and L.-J. Wu, Zhongguo Tianran Yaowu, 1, 82 (2003).
- J.-J. Cheng, L.-J. Zhang, H.-L. Cheng, C.-T. Chiou, I.J. Lee and Y.-H. Kuo, J. Nat. Prod., 73, 1655 (2010).
- A.G. González, B.M. Fraga, P. González, M.G. Hernandez and A.G. Ravelo, *Phytochemistry*, **20**, 1919 (1981).
- A. De Felice, A. Bader, A. Leone, S. Sosa, R. Loggia, A. Tubaro and N. De Tommasi, *Planta Med.*, **72**, 643 (2006).