

NOTE

A New Anthraquinone from the Fruit of Cassia fistula and Its Cytotoxicity

JUANXIA YANG, HUAN WANG, GUIYOU LIU, JIE LOU, LIMEI LI, QIUFEN HU and YANQING YE*

Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities, Kunming 650031, P.R. China

*Corresponding author: E-mail: yey-qing@163.com

1	Received: 24 December 2013;	Accepted: 9 April 2014;	Published online: 5 July 2014;	AJC-15511				
	A new anthraquinone, fistulaquinone A (1) was isolated from the fruits of <i>Cassia fistula</i> . Its structure was elucidated by spectroscopic methods, including extensive 1D- and 2D NMR techniques. This new compound 1 was tested for its cytotoxicity and it showed potential cytotoxicity against NB4 and PC3 cell with IC ₅₀ values of 6.3 and 5.8 μ M.							
- 1	Vorwonder Anthrogeninone Case	in fintula Critotominita						

Keywords: Anthraquinone, Cassia fistula, Cytotoxicity.

Cassia fistula L., (Leguminosae) is an ornamental tree with beautiful yellow flowers¹. In China, it has been used as traditional Chinese medicine by people of Dai nationality, who lived in Xishuangbanna, Yunnan province for treatment of diarrhea, gastritis, ringworm and fungal skin infections^{2,3}. Previous phytochemical studies of *C. fistula* have shown the presence of anthraquinones^{4,5}, steroids⁶, chromones^{7,8}, and flavonoids⁹. Motivated by a search for new bioactive metabolites from local plants, our group investigated the chemical constituents of the fruits of *C. fistula* growing in Xishuangbanna Prefecture, which led to the isolation and characterization of a new anthraquinone (1). This paper deals with the isolation, structural characterization and the cytotoxicity of this new compound.

UV spectra were obtained using a Shimadzu UV-2401A spectrophotometer. IR spectra were obtained in KBr disc on a Bio-Rad Wininfmred spectrophotometer. ESI-MS were measured on a VG Auto Spec-3000 MS spectrometer. ¹H-, ¹³C and 2D NMR spectra were recorded on Bruker DRX-500 instrument with TMS as internal standard. Column chromatography was performed on silica gel (200-300 mesh), or on silica gel H (10-40 μ m, Qingdao Marine Chemical Inc., China). Second separation was performed by an Agilent 1100 HPLC equipped with ZORBAX-C₁₈ (21.2 × 250, 7.0 μ m) column and DAD detector.

Fruits of *Cassia fistula* L., (Leguminosae) were collected in Xishuangbanna Prefecture, Yunnan Province, People's Republic of China, in September 2011. The identification of the plant material was verified by Prof. Yuan. N (Xishuangbanna Botanical Garden). A voucher specimen (YNNI-2010-9-28) has been deposited in our laboratory. **Extraction and isolation:** Air-dried and powdered fruits of *C. fistula* (2.2 kg) were extracted four times with 70 % acetone (4×5 L) at room temperature and filtered. The crude extract (126 g) was applied to silica gel (200-300 mesh) column chromatography, eluting with a MeOH-CHCl₃ gradient system (9:1, 8:2, 7:3, 6:4, 5:5), to give five fractions A-E. The further separation of fraction A (9:1, 22.6 g) by silica gel column chromatography, eluted with (CH₃)₂CO-CHCl₃ (9:1, 8:2, 7:3, 6:4, 1:1), yielded the subfraction A1-A5. The subfraction A1 (9:1, 5.6 g) was subjected to preparative HPLC (65 % MeOH, flow rate 12 mL/min) to give **1** (14 mg).

Fistulaquinone A (1): $C_{20}H_{14}O_7$, Obtained as yellow powder; UV (MeOH), λ_{max} (log ε) 368 (3.57), 282 (4.16), 258 (3.83), 210 (4.36) nm; IR (KBr, ν_{max} , cm⁻¹) 3395, 2926, 2873, 1690, 1652, 1608, 1560, 1487, 1423, 1368, 1273, 1161, 1131, 1068, 876, 763; ¹H and ¹³C NMR data (CDCl₃, 500 and 125 MHz), Table-1; ESI-MS (positive ion mode) *m/z* 389 [M + H]⁺; HR-ESI-MS (positive ion mode) *m/z* 389.0632 [M + H]⁺ (calcd 389.0637 for $C_{20}H_{14}NaO_7$).

The air-dried and powdered fruits of *C. fistula* (2.2 kg) was extracted with 70 % aqueous acetone (4×5 L) at room temperature and filtered to yield a filtrate, which was successively evaporated under reduced pressure to obtain a crude extract (126 g). This crude extract was subjected repeatedly to column chromatography on Silica gel, Sephadex LH-20, RP-18 and preparative HPLC to afford compound **1**. Its structures were shown in Fig. 1. The ¹H- and ¹³C NMR data of the compound **1** was listed in Table-1.

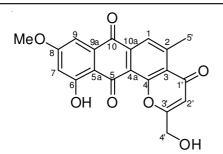


Fig. 1. Structure of compound 1

TABLE-1 ¹ H AND ¹³ C NMR DATA OF COMPOUND 1 (δ IN ppm, IN CDCl ₃)							
No.	$\delta_{\!C}(m)$	$\delta_{\rm H} (m, J = {\rm Hz})$	No.	$\delta_{C}(m)$	$\delta_{\rm H} ({\rm m}, J = {\rm Hz})$		
1	124.5 d	7.58, s	9a	121.5 s	-		
2	144.4 s	-	10	182.3 s	_		
3	133.3 s	-	10a	125.2 s	-		
4	155.2 s	-	1'	182.6 s	_		
4a	117.6 s	-	2'	108.5 d	6.50, s		
5	184.5 s	-	3'	168.6 s	-		
5a	113.3 s	-	4'	62.3 t	4.46, s		
6	160.5 s	-	5'	18.6 q	2.08, s		
7	107.2 d	6.96, s	-OMe-8	55.9 q	3.81, s		
8	166.4 s	-	Ar-OH-6	-	12.28, s		
9	109.2 d	7.13 s	-	_	-		

Compound 1 was isolated as a vellow powder: Highresolution ESIMS analysis gave a quasi-molecular ion at m/z389.0632 $[M + H]^+$, consistent with a molecular formula of $C_{20}H_{14}O_7$, which indicated 14 degrees of unsaturation. The UV spectrum of 1 exhibited absorption bands at 368, 282, 258 and 210 nm, highly suggesting the existence of aromatic chromophore¹⁰. Strong absorption bands accounting for hydroxy (3395 cm^{-1}) , carbonyl $(1690, 1652 \text{ cm}^{-1})$ and aromatic groups (1608, 1560 and 1487 cm⁻¹) could also be observed in its IR spectrum. The ¹H NMR spectrum of **1** (Table-1) showed the presence of one phenolic hydroxy proton ($\delta_{\rm H}$ 12.28), one methoxy proton ($\delta_{\rm H}$ 3.81), four singlet aromatic protons ($\delta_{\rm H}$ 7.58, 6.96, 7.13 and 6.50) and two aliphatic protons contributed by one methyl singlet ($\delta_{\rm H}$ 2.08), one O-methylene singlet ($\delta_{\rm H}$ 4.46). In the ¹³C NMR spectrum of **1** (Table-1), $14 sp^2$ carbon signals, including three oxygenated quaternary sp^2 carbon signals (δ_c 155.2, 160.5 and 166.4) and two carbonyl carbon signals (δ_c 184.5 and 182.3) were observed, which highly suggested the presence of anthraquinone core¹⁰.

The additional carbons account for the remaining substituents, a methoxy group (δ_c 55.9 s), a hydroxymethyl chromone ring (δ_c 182.6 s, 108.5 d, 168.6 s, 62.3 t)¹¹, and a methyl carbon (δ_c 18.6) on the anthraquinone ring. The substituents and their location on the anthraquinone ring were established by analysis of the HMBC spectra of 1 (Fig. 2). The HMBC correlations from a methyl singlet (δ_H 2.08) to C-1 (δ_c 124.5), C-2 (δ_c 144.4) and C-3 (δ_c 133.3) established the location of a methyl group at C-2. HMBC correlations between the hydroxy proton

 $(\delta_{\rm H} 12.28)$ and C-6 ($\delta_{\rm C} 160.5$), C-7 ($\delta_{\rm C} 107.2$) and C-5a ($\delta_{\rm C} 113.3$), led to the assignment of the phenolic hydroxy group at C-6. The methoxy group located at C-8 was supported by the HMBC correlation of the methoxy proton ($\delta_{\rm H} 3.81$) with C-8 ($\delta_{\rm C} 166.4$). Additionally, H-2' ($\delta_{\rm H} 6.50$) showed correlation with the carbon signal of C-3 ($\delta_{\rm C} 133.3$) clearly indicated that the hydroxymethyl chromone ring should be located between C-3 and C-4. On the basis of the above evidence, the structure of **1** was established as shown and given the trivail name of fistulaquinone A.

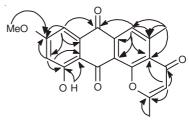


Fig. 2. Key HMBC (-) correlation of 1

Compound 1 were tested for its cytotoxicity against five tumor cells line (NB4, A549, SHSY5Y, PC3 and MCF7) using a previously reported procedure¹². The results showed that 1 exhibited potential cytotoxicity against NB₄ and PC₃ cell with IC₅₀ values of 6.3 and 5.8 μ M.

ACKNOWLEDGEMENTS

This research was supported by the National Natural Science Foundation of China (No. 21302164) and the excellent Scientific and Technological Team of Yunnan High School (2010CI08).

REFERENCES

- 1. V. Duraipandiyan and S. Ignacimuthu, *J. Ethnopharmacol.*, **112**, 590 (2007).
- S. Rajan, D.S. Baburaj, M. Sethuraman and S. Parimala, *Ethnobotany*, 6, 19 (2001).
- J. Ma, L.X. Zhang and Y.H. Guan, Chin. J. Ethnomed. Ethnopharm., 5, 178 (2004).
- K.A. Abo, A.A. Adeyemi and A.O. Sobowale, *Afr. J. Med. Med. Sci.*, 30, 9 (2001).
- 5. S. Aurapa and G. Wandee, Int. J. Biomed. Pharm. Sci., 3, 42 (2009).
- 6. P. Sartorelli, S.P. Andrade, M.S. Melhem, F.O. Prado and A.G. Tempone, *Phytother. Res.*, **21**, 644 (2007).
- 7. Y.H. Kuo, P.H. Lee and Y.S. Wein, J. Nat. Prod., 65, 1165 (2002).
- S.L. Jothy, Z. Zakaria, Y. Chen, Y.L. Lau, L.Y. Latha, L.N. Shin and S. Sasidharan, *Molecules*, 16, 7583 (2011).
- W. Zhao, X.Y. Zeng, T. Zhang, L. Wang, G.Y. Yang, Y.K. Chen, Q.F. Hu and M.M. Miao, *Phytochem. Lett.*, 6, 179 (2013).
- 10. Y.C. Hu, E.D. Martinez and J.B. MacMillan, J. Nat. Prod., 75, 1759 (2012).
- 11. P. Tuntiwachwuttikul, P. Phansa, Y. Pootaeng-On and W.C. Taylor, *Chem. Pharm. Bull. (Tokyo)*, **54**, 44 (2006).
- X.M. Gao, R.R. Wang, D.Y. Niu, C.Y. Meng, L.M. Yang, Y.T. Zheng, G.Y. Yang, Q.F. Hu, H.D. Sun and W.L. Xiao, *J. Nat. Prod.*, **76**, 1052 (2013).