

Synthesis and Crystal Structure of 3-((*m*-Tolylamino)methylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione

WU-LAN ZENG^{1,*} and HUI-LIAN LIU²

¹Microscale Science Institute, Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, P.R. China

²Microscale Science Institute, College of Bioengineering, Weifang University, Weifang 261061, Shandong Province, P.R. China

*Corresponding author: Tel/Fax: +86 536 8785802; E-mail: wulanzeng@163.com

Received: 10 October 2013;	Accepted: 18 March 2014;	Published online: 5 July 2014;	AJC-15474
----------------------------	--------------------------	--------------------------------	-----------

A new N,O-containing spiro compound 3-((*m*-tolylamino)methylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione was synthesized and its crystal structure was determined by X-ray crystallographic techniques. The compound crystallizes in triclinic, space group P-1 with a = 7.0264 (14) Å, b = 7.8523 (16) Å, c = 14.102 (3) Å, $\alpha = 94.75$ (3)°, $\beta = 98.14$ (3)°, $\gamma = 96.29$ (3)°, $C_{17}H_{19}NO_4$, Mr = 301.33, V = 761.7 (3) Å³, Z = 2, Dc = 1.314 g/cm³, F (000) = 320, μ (MoK α) = 0.094 mm⁻¹, the final R = 0.0496 and wR = 0.3294. The 1,3-dioxane ring is in a distorted envelope conformation while cyclohexane ring assumes a highly symmetric chair conformation. There exist some intra- and intermolecular hydrogen bonds, C-H… π supramolecular interactions and π … π stacking interactions in the title compound. All above hydrogen bonds and intermolecular interactions play a significant role in stabilizing the crystal structures.

Keywords: Synthesis, Crystal structure, 1,5-Dioxaspiro[5.5]undecane-2,4-dione, Spiro compounds.

INTRODUCTION

Spiro compounds have attracted the attention of scholars and scientists owing to their potential applications in medicine^{1.4}, catalysis and optical material⁵⁻⁶. Recently, the design and synthesis of spiro compounds were stimulated by an increasing interest due to their pronounced biological activities such as antimicrobial, anxiolytic, antineoplastic, analgesic activity, *etc.*⁷⁻⁹. For these reasons, our group have developed a new simple strategy towards the construction of various oxaspirocyclic compounds¹⁰⁻¹². However, to the best of our knowledge, among so many reported spiro-compounds, O, N- containing spiro compounds derived from 1,5-dioxaspiro [5.5]undecane-2,4dione are rare. In this paper, we report the synthesis and crystal structure of the title compoud, 3-((*m*-tolylamino)methylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (I).

EXPERIMENTAL

All the reagents and solvents from commercial sources were used without further purification. Melting points were measured by using a melting point apparatus made in Shanghai Instrument Limited Company. X-ray diffraction was performed on a SMART CCD area detector diffractometer.

A mixture of methylorthoformate (1.27 g, 0.012 mol) and 1,5-dioxaspiro[5.5]undecane-2,4-dione (1.84 g, 0.01 mol)) was stirred in ethanol (30 mL) for 2 h at reflux temperature. Then the *m*-toluidine (1.07 g, 0.01 mol) was added into the solution. The mixture was heated under reflux for another 6 h. After cooling to room temperature, the precipitate was filtered off and dried. Yield 38 %. m.p.: 125.2-126.6 °C. The colorless and block single crystal was obtained by evaporation for petroleum ether and ethyl acetate (1:1 = v/v) after a few days.

Data collection and structure determination: A selected crystal of the title compound was mounted on a SMART CCD diffractometer. The reflection data were measured at 293 K, using a graphite monochromator MoK_{α} ($\lambda = 0.071073$ nm) radiation with an ω scan mode. A total of 7471 reflections were collected and 3456 were independent (R_{int} = 0.0496) in the range of $3.09 < \theta < 27.48^\circ$, of which 1302 reflections were observed with I > 2σ (I).

The structure of the compound **I** was solved by direct methods and refined by full-matrix least-squares on F^2 using

Vol. 26, No. 14 (2014)

the SHELXTL software package¹³. All non-hydrogen atoms were refined by full-matrix least-squares method, while all hydrogen atoms were placed in the geometrically calculated positions. The contributions of these hydrogen atoms were included in the structure-factor calculations. The atomic scattering factors and anomalous dispersion corrections were taken from International Table for X-ray crystallography¹⁴. The crystal and experimental data are shown in Table-1.

TABLE-1							
CRYSTAL DATA AND STRUCTURE							
Empirical formula $C_{17}H_{19}NO_4$							
Formula weight 301.33							
Temperature (K) 293(2)							
Wavelength (A) 0.71073							
Crystal system Triclinic							
Space group P-1							
Unit cell dimensions $a = 7.0264(14) \text{ Å}; \alpha = 94.75 (3)$)°						
$b = 7.8523(16) \text{ Å}; \beta = 98.14 (3)$)°						
$c = 14.102(3) \text{ Å}; \gamma = 96.29 (3)^{\circ}$							
Volume (Å ³), Z 761.7(3), 2							
Calculated density (g/cm ³) 1.314							
Absorption coefficient (mm ⁻¹) 0.094							
F (000) 320							
Crystal size (mm) $0.26 \times 0.18 \times 0.16$ mm							
Theta range for data collection (°) 3.09-27.48							
Limiting indices $-8 < = h < = 9; -10 < = k < = 9;$	-8 < = h < = 9; -10 < = k < = 9;						
-18 < = 1 < = 18							
Reflections collected/unique $7471/3456 [R(int) = 0.0496]$							
Completeness to theta = 27.48 99.1 %							
Refinement method Full-matrix least-squares on F ²							
Data/restraints/parameters 3456/0/199							
Goodness-of-fit on F ² 1.689							
Final R indices $[I > 2\sigma(I)]$ R ₁ = 0.1267, wR ₂ = 0.3292							
R indices (all data) $R_1 = 0.2245, wR_2 = 0.3854$							
Largest diff. peak and hole 0.684 and -0.300							
(Einstein Å ⁻³)							

RESULTS AND DISCUSSION

The atomic coordinates and equivalent isotropic thermal parameters for the non-H atoms in the title compound are given in Table-2 and the selected bond distances and bond angles in Table-3. A displacement ellipsoid plot with atomic numbering scheme is shown in Fig. 1 and a perspective view of the crystal packing in the unit cell in Fig. 2.

Fig. 1. Molecular structure with atomic numbering scheme

Fig. 2. View of crystal packing

TABLE-2ATOMIC COORDINATES ($\times 10^4$) AND THERMAL PARAMETERS ($\mathring{A}^2 \times 10^3$)									
Atom	х	У	Z	U (eq)	Atom	х	у	Z	U (eq)
O(2)	1649(5)	549(5)	6416(3)	89(1)	C(7)	430(8)	-304(8)	8128(5)	88(2)
O(1)	254(5)	-1470(4)	7336(3)	86(1)	C(4)	3542(8)	-1606(7)	7047(4)	89(2)
C(8)	1374(8)	1319(8)	8046(5)	90(2)	C(2)	4053(11)	-2702(9)	5413(5)	119(2)
C(6)	714(9)	-2357(7)	5765(4)	99(2)	C(16)	2987(9)	6807(11)	9747(5)	111(2)
C(5)	1558(7)	-1224(6)	6651(4)	79(2)	C(14)	3202(7)	7577(8)	11412(5)	94(2)
N(1)	2284(8)	3896(11)	8978(5)	137(2)	C(10)	1581(8)	2521(10)	9034(7)	136(3)
C(12)	2484(7)	4630(8)	10810(6)	100(2)	C(15)	3286(9)	8044(10)	10515(5)	112(2)
C(11)	2558(8)	5162(11)	9917(6)	100(2)	C(3)	4892(8)	-1504(8)	6308(5)	103(2)
O(3)	-317(7)	-753(6)	8802(3)	128(2)	C(1)	2051(10)	-2313(10)	5007(5)	118(2)
C(13)	2794(7)	5927(8)	11598(4)	89(2)	C(17)	2673(10)	5456(9)	12562(6)	127(2)
O(4)	2425(6)	3269(5)	6971(4)	132(2)	C(7)	430(8)	-304(8)	8128(5)	88(2)
C(9)	1872(8)	1834(8)	7171(6)	100(2)	-	-	-	-	-

TABLE-5 $\pi \cdots \pi$ STACKING INTERACTIONS							
Ring	Symmetry	Centroid-to centroid distance (Å)	Perpendicular distance of Cg(I) on ring J(Å)	Perpendicular distance of Cg(J) on ring I(Å)	Dihedral angle (β) between Planes I and J (°)		
$Cg(3)\cdots Cg(3)$	-x,1-y,2-z	4.450	3.522	3.522	37.68		
$Cg(3)\cdots Cg(3)$	1-x,1-y,2-z	4.385	3.413	3.413	38.90		
$C_{\sigma(3)}$: $C_{\sigma(1)} = C_{\sigma(3)} = C_{\sigma(4)} = C_{\sigma(5)} = C_{\sigma(6)}$							

TABLE-3 SELECTED BOND LENGTHS (Å) AND BOND ANGLES (°)						
Bond	Å	Bond	Å			
O(2)-C(9)	1.384(7)	N(1)-C(10)	1.151(8)			
O(2)-C(5)	1.454(6)	N(1)-C(11)	1.564(9)			
O(1)-C(7)	1.367(6)	O(3)-C(7)	1.208(6)			
O(1)-C(5)	1.433(5)	O(4)-C(9)	1.219(7)			
C(8)-C(9)	1.408(9)	C(8)-C(10)	1.596(10)			
Angles	(°)	Angles	(°)			
C(10)-N(1)-C(11)	115.9(8)	C(7)-C(8)-C(10)	110.6(6)			
N(1)-C(10)-C(8)	112.4(8)	C(9)-C(8)-C(10)	126.1(6)			

As can be seen from the crystal structure (Fig. 1), the central C(10) atom is linked by 1,5-dioxaspiro[5.5]undecane-2,4-dione group and *m*-tolylamino ring, forming the N(1)-C(10)-C(8) bond angle of 122.4 (8(5)°. The 1,3-dioxane rings of the title compound are both in a distorted screw-boat conformation. While the cyclohexane rings of the two compounds both exhibit a chair-like configuration, with puckering parameters¹⁵ for Q = 0.553 (7) Å, q² = 0.024 (7) Å), q³ = 0.552 (7) Å, J = 0.0552 (7), J = 108 (16)°.

As shown in Table-4, there exists one type of N-H···O intra- and one type of C-H···O intermolecular hydrogen bond in the title compound. The salient feature in the crystal packing of the title compound is that there is still two types of C-H··· π supramolecular interactions and two types of π ··· π stacking interactions (Table-5). In the crystal lattices, all above hydrogen bonds and intermolecular interactions play a significant role in stabilizing the crystal structures.

TABLE-4 INTERMOLECULAR INTERACTION DISTANCES (Å)							
D-H-A	Symmetry	D-H	Н…А	D…A	D-H···A		
N(1)-H(1A)O(4)	intra	0.8596	2.1368	2.850(9)	140.08		
C(12)-H(12A)O(3))	-x,-y,2-z	0.9300	2.4975	3.374(8)	157.10		
N(1)-H(1A)phenyl		0.8600					
ring	1-x,1-y,2-z		3.305	3.391	88.31		
C(10)-H(10A)							
phenyl ring	-x,1-y,2-z	0.9300	3.188	3.423	96.70		

ACKNOWLEDGEMENTS

The authors thank the Development Plan of Science and Technology of Weifang for support (201003039).

REFERENCES

- 1. Y. Liang, J. Guo, X. Liu and R. Wei, *Chem. Res. Chin. Univ.*, **24**, 441 (2008).
- H. Kikuchi, Y. Miyagawa, Y. Sahashi, S. Inatomi, A. Haganuma, N. Nakahata and Y. Oshima, J. Org. Chem., 69, 352 (2004).
- 3. R. Pradhan, M. Patra, A.K. Behera, B.K. Mishra and R.K. Behera, *Tetrahedron*, **62**, 779 (2006).
- P. Kongsaeree, S. Prabpai, N. Sriubolmas, C. Vongvein and S. Wiyakrutta, J. Nat. Prod., 66, 709 (2003).
- Y. Jiang, S. Xue, Z. Li, J. Deng, A. Mi and A.S.C. Chan, *Tetrahedron*, 9, 3185 (1998).
- J.H. Kim, Y.M. Jeon, J.G. Jang and S. Ryu, *Bull. Korean Chem. Soc.*, 30, 647 (2009).
- A.I. Markosyan, S.A. Gabrielyan, F.G. Arsenyan, R.S. Sukasyan and I.S. Sarkisyan, *Pharm. Chem. J.*, 44, 409 (2010).
- S. Kabilan and S. Umamatheswari, *Med. Chem. Res.*, 20, 542 (2011).
 Velikorodov, A.V. Velikorodov, V.A. Ionova, O.V. Degtyarev and L.T.
- Sukhenko, *Pharm. Chem. J.*, **46**, 715 (2013).
 W.L. Zeng, Y.F. Li and Y. Liu and F.F. Jian, *Z. Kristallogr. NCS*, **225**,
- 498 (2010).11. W.L. Zeng, Asian J. Chem., 23, 4145 (2011).
- 12. W.L. Zeng, Q.G. Meng, H.M. Guo, L. Zhang and F.F. Jian, *Chin. J. Struct. Chem.*, **29**, 696 (2010).
- 13. G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008).
- 14. Siemens, Area Detector Control and Integration Software, USA (1996).
- 15. D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97, 1354 (1975).