
INTRODUCTION

The aluminum electrolysis process is with complicated

electrolysis equipment, harsh operating conditions during and

various kinds of faults. Sometimes, multi-failures happen at

the same time. So, an effective fault diagnosis is the key point

to ensure the safety and stability. The advantages of adopting

the single neural network to realize the multi-fault diagnosis

are as follows:

• Quite a few fault samples are required in the network

and it is hard to obtain the eigenvectors that refer to the various

faults.

• The number of the input knots is huge in the vast fault-

diagnosis network which contributes to the difficulty in

training. By contrast, the accuracy of the fault alarm will be

decreased for the less fault information if the number of inputs

is cut down.

• As the magnitudes of the input information differ sharply,

the data with small magnitudes will be drowned in the vast

magnitudes of noise and the fault information can not be

reflected. So the effect of the fault diagnosis will certainly be

influenced.

Given the above drawbacks in the single neural network,

a new method called modular integrated fuzzy neural network

of multi-fault diagnosis solution method is put forward.

Multi-Fault Diagnosis of Aluminum Electrolysis Based on Modular Fuzzy Neural Networks

JIEJIA LI
*, PENG ZHOU and JINXIANG PIAN

School of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, P.R. China

*Corresponding author: E-mail: ljj_0123@sjzu.edu.cn

Received: 12 February 2014; Accepted: 15 April 2014; Published online: 25 May 2014; AJC-15244

Aluminum electrolysis is a nonlinear process with the characteristics of multi-variable, strong coupling, time-varying and large time-

delay. There are different types of faults that occur frequently in it. According to the fault characteristics of the aluminum electrolysis, a

multi-fault diagnosis method of aluminum electrolysis which is based on modular integrated fuzzy neural network is proposed. Consid-

ering the shortages of a single network applied in multi-fault diagnosis, a multi-fault diagnosis platform with two layers of sub-network

and decision fusion network is constructed in multi-fault diagnosis of aluminum electrolysis, combining fuzzy logic and neural network

by the application of the concept of modular integration. Mixed particle swarm optimization algorithm is adopted in the paper so that the

convergence speed and accuracy of the network can be increased to some extent. Simulation results show that the proposed method can

improve the accuracy rate of fault prediction and give the prediction advance.
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EXPERIMENTAL

Setup of the network model: We adopt the modular

integrated fuzzy neural-network multi-fault diagnosis model

(including diagnosis of sub-networks anode effect hot tank

and cold tank diagnostic sub-networks and the data-fusion sub-

networks) based on the modulation and data fusion. As is

shown in Fig. 11.
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Fig. 1. Structure of aluminum electrolysis fault diagnosis network

While designing the fault diagnosis sub-network, the

closely related characteristic variables are chosen as the input

variables of the sub-network, cell resistance, cell resistance

change rate and the change rate of the temperature. Tempe-

rature and the current series1 are chosen in hot tank and cold

tank fault diagnosis sub-network.
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The fault probability is output by the each fault diagnosis

sub-network and its initial diagnosis of fault is finished. In

order to improve the accuracy in fault diagnosis and to detect

at least two faults at the same time, two diagnosis modes are

utilized and these modes add up to the decision fusion web,

analyzing the fault information and giving their conclusions

on the fault diagnosis.

Sub-fault diagnosis model: Elman neural-network struc-

ture is adopted in the sub-fault diagnosis model, anode effect

sub-diagnostic network composed of hot sink and cold sink.

Set the anode effect diagnostic fault sub-network for example,

the Elman neural-network is used in this network, which is

mainly made up of the input layer, hidden layer, structure layer

and the output layer. Its structure model is given below:
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Fig. 2. Anode effect sub-fault diagnostic network model

The role of input layer is to allocate the input signals of

the system. Its quantity is determined by the mechanism of

the fault diagnosis. The inputs of the sub-diagnostic network

for anode effect are the sink resistance, the rate of change for

the resistance and the change rate for the temperature (three

input variables). Similarly, the inputs of the fault diagnostic

sub-network are the currents and temperatures, which means

that there are two inputs in it.

)k(u)k(y i
u
i = (1)

yi
u is the ith component in the input layer; ui(k) is the ith

component of the kth output.

The role of the output layer is to give the sub-network

fault diagnosis probability and these parameters are passed to

the decision-fusion network to be given fused.

x(k) = W3h(k) (2)

Among them W3 is the weight from the hidden layer to

the output layer.

Recursive algorithm is used in the structure layer to derive

the output of the last time in the hidden memory.

)1k(h)1k(h)k(h cc −+−γ= (3)

among them, γ is the self-connected feedback gain factor.

Hidden layer: These neurons are used to extract more

valuable information gradually from the input mode, to

approach any function, enabling the network to get a better

understanding of the complex tasks. The accuracy of the fault

diagnosis is largely impacted by the number of the hidden

layer. For example, the node optimization is obtained through

the genetic algorithm in the anode effect sub-network.

h(k) = f[W1hc(k) + W2u(k-1)] (4)

W1 is the weight from the structure layer to the hidden layer.

W2 is the weight from the input layer to the hidden layer.

Activation function is the sigmoid function as follows:

x
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1
)x(f
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= (5)

To determine the number of the hidden layer neurons:

The pre-training method to determine network nodes in the

hidden neural-network is used. According to the Kolmogorov

theorem, the optimization of the nodes in the hidden layer is

given below:

L m n a≤ + + (6)

L is the quantity of the nodes in the hidden layer, m is the

quantity of the nodes in the output layer, a is the constant

between 0 to 10. In the practical problem, we choose the

approximate range of the number of nodes in the hidden layer

by referring to the formula to set the best number within the

model. Set the anode effect fault diagnosis sub-network as

example, input number is 3, output number is 1, which we get

from the formula 7 that L < 2 + 10 = 12. To get the better test

results, we give L as the upper limit to set up the neural-network

and then change the genetic algorithm to optimize it.

Coding: To determine the optimal structure in the Elamn

model, the mixed coding way float number code way to code

the neural-network weights. Binary symbol string d1d2…di…dn

are the hidden node codes in the neural-network, among which

n is the upper limit of the hidden layer. For example, we set

four neurons and the node is effective when di = 1 and invalid

until di = 0. Set the upper limit in the hidden layer as 4 and

when the code is 1011, the first node  second one and the third

one are chosen. At the same time, the nodes chosen are the

effective weights and the thresholds.

Population initialization: From step 1: we know that the

number of the hidden layer neurons ranges from 1 to 12. For

these 12 different groups of network structures, each produces

5 chromosomes and the population size is 60. The range of

the weight initialization is [-1, 1], its crossover probability Pc

=0.5, its mutation probability Pm = 0.001 and maximum

iteration number Gmax = 100. Its initialization chromosome

structure is
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The top 12 are structure codes of the effective neurons.

And the others are weight codes when the hidden layer neurons

are effective.

Calculation of individual fitness: n samples to optimize

the network is input. Set yk and tk as the real outputs and the

desired output, respectively (k = 123…N). Mean square error

Ec is expressed as followed:

∑
=

−=
N

1k

2
kkc )yt(

N

1
E (7)

According to the training result from the selected predic-

tion model of fitness function evaluation and to simplify the

network structure with the same performance in the same

conditions, we set the fitness function as
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COE1

1
fit

c ++
= (8)

Among which, the constant C ∈ (0, 0.5) is the complexity

factor in the neural networks. In this paper, we set C = 0.1. O

is the number of the nodes in the hidden layer, that is to say,

the number of one in the structure coding.

Judging whether the fitness value satisfies the setting

requirements. If it meets the requirements, go to step 7,

otherwise, go to step 6.

Selection crossover and mutation: Roulette wheel

selection method is adopted and several individuals which have

larger fitness are copied directly to the next generation. Those

that need the crossover and mutation could be operated cross-

over and mutation according to the crossover probability Pc

and the mutation probability Pm to get the next generation and

then go to step 4 to evaluate the fitness values.

If it meets the preconditions or it meets the maximum

number of the iteration steps, stop the circulating and obtain

the optimized chromosome group. Then decode them and

convert them into the nodes in the hidden layer. At last, we

show the outcome from the hidden layer optimization in the

anode effect sub-network as followed in the Table-1.

From the results, as it can be seen that the average fitness

and the chromosome numbers are the biggest when the number

of the hidden layer neurons is four. Hence, the number of the

best hidden layer nodes is 4 in the anode effect predicted sub-

network.

Secondary training: The secondary training for the weights

of the hidden layer neurons is operated after the number of

these neurons forming the fault diagnostic sub-network is

determined. Hybrid particle swarm optimization is adopted to

optimize the weights in the following chapters.

Decision fusion network design: Fuzzy neural network

structure is applied in the decision fusion network. Its inputs

are the outputs from the front sub-networks. Anode effect fault

diagnosis sub-network has one output node and those form

the cold and hot sink has two outputs each. And we get 3 input

nodes for the decision fusion sub-network. This paper uses

the fuzzy neural network to diagnose the faults in the aluminum

electrolysis. The training sample data and the tested sample

data are obtained from the production site. During the fault

recognition process of the aluminum electrolysis, we find there

are the anode effect hot and cold sink faults. Similarly, there

exist some compound faults from the anode effect and the hot

sink; anode effect and the cold sink. Decision network output

modes have six types. Table-2 shows the fault categories from

the various outputs.

The fuzzy neural network structure is adopted in the

decision fusion network, whose structure is showed in the

Fig. 3. It consists of input layer, fuzzy layer, rule layer and the

output layer and the allocation, fuzzy work, fuzzy calculation

TABLE-2 

OUTPUT VALUE OF THE NETWORK AND ITS 
CORRESPONDING FAILURE MODE 

Output 
Fault class 

Y3 Y2 Y1 

Normal system 

Anode effect 

Cold trough 

Hot trough 

Anode effect and hot trough 

Anode effect andcold trough 
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Fig. 3. Decision fusion network model

and the antifuzzy calculation are executed, respectively. From

each neuron in the fuzzy layer, its network parameters are the

fuzzy center values m, the width  and the weight W from the

rule layer to the output layer.

The first layer is the input layer, which passes the neuron

output directly to the next layer, transition and distribution of

signals.

m
)1(

m
)1(

m xuy == (9)

From which, xm is the mth component of outer input,

which symbolizes the diagnostic outcome from the sub-

network.

The second is the fuzzy layer, where the neuron realizes

the input fuzzy with the fuzzy functions.
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where, umi
(2) is the input and mmi

(2) is the output of the ith

component in the second layer from the mth neuron in the

first layer. umi
(2) is the fuzzy center value and σmi

(2) is the width

from the neuron. Each network input is divided into five parts

in this network, such as negative large, negative small, zero,

positive large and positive small. With the Gaussian Functions

TABLE-1 

NUMBER OF HIDDEN LAYER NEURON IN SUB-NETWORK, THE AVERAGE OF 
ITS FITNESS AND THE NUMBER OF CHROMOSOMES DETECTED BY ANODE EFFECT 

Hidden layer nodes 1 2 3 4 5 6 7 8 9 10 11 12 

Average fitness 0.113 0.247 0.582 0.613 0.508 0.321 0.245 0.153 0.143 0.217 0.156 0.119 

Number of chromosome 1 3 11 18 10 7 3 1 1 3 1 1 
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the sub-network probability is classified fuzzily according to

the range of zero to one.

The third layer is the rule layer to calculate the logic with

the fuzzy results of the second layer. The fuzzy rules are shown

as follows:

Set x the M-dimensional vector. The number of each term

linguistic values of the dimension components are, I1, I2 …,

IM. y is the N-dimensional vector. The number of each term

linguistic value of dimension components is J1, J2, ,…, JN. The

MA model of IF-THEN fuzzy inference rules are shown as

follows:

Rule 1: IF x1 is A11, x2 is A21, … and xM is AM1, then y1 is

B11, …, yN is BN1. Rule r: If x1 is A1r, x2 is A2r, … and xM is AMr,

then y1 is B1r, …, yN is BNr. Rule R: If x1 is, A1I1, x2 is A2l2
, …

and xM is AMIM
, then y1 is B1J1

, …, yN is BNJN
.

The network computing form is used to attain IF-THEN

fuzzy inference rules of the MA model. In the first input layer/

the value of the input language layer we use the M input layer

neuron/the value of the input language neurons, which

corresponds to the IF-THEN fuzzy rules of the x vector of

variables in each component. In the second term layer/the input

term layer, I1, I2, …, IM are used, respectively term neuron/

input term neurons, which corresponds to the IF-THEN fuzzy

rules of the term language value A11, A12, …, AMIM
. In the third

layer, rule layer adopts the production operation to realize ‘and’

in the inference rules of the implementation. Expression is as

follows:

∏
=

=
r

k

K

1k

)3(
r

3
r uy (11)

which, Kr is the number of all input variables in the third layer

of the r neurons.

The fourth layer is the output layer. The weighted squared

method is used to antifuzzy.
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where, yi is the output of term fuzzy neural network.

Learning algorithms of the network: In the network,

the parameters of the neural network are updated with particle

optimization algorithm. The network uses the global PSO to

find out the approximate results and then use the local PSO to

continue the specific search. In the iteration process, we need

to get the distance between each particle and other particles.

For each particle, use the following formula to get the ratio:

max

ba

d

XX −
(13)

where, ||Xa - Xb|| is the current distance between particle a

and particle b. dmax is the maximum distance between any two

particles in iterative methods. The threshold è varies according

to the number of iterations. When another particle b fits the

following formula,

η<
−

max

ba

d

XX
(14)

Then, the b becomes the neighborhood of this particle.

All the particles satisfy the conditions making up a set Ni.

Using the improved neighborhood rules, the threshold θ varies

according to the number of iterations. θ is expressed as follows,

maxi

i6.0t3 +
=θ (15)

If θ > 0.9, the global particle swarm algorithm is adopted

to renew the velocity and location of the particle. Otherwise,

the local particle swarm algorithm will be adopted to renew

the velocity and location of the particle.

RESULTS AND DISCUSSION

The data aluminum plant provides before and after the

fault occurrence is taken to do some fault diagnosis simulation.

Take data in 100 min of each state cell in the electrolysis slot

(sampling interval is 20 s), a total of 300 inputs are used to

train the system aiming for testing the network. Simulation

research and analysis are carried on the three parts of the system

-the training convergence rate simulation, single fault predic-

tion research simulation and effectiveness of multi-fault

prediction simulation.

Results of particle swarm algorithm and its optimiza-

tion: Repeat the original PSO and improved PSO learning

process 10 times, respectively. The statistical comparison

results of the learning process are shown in Table-3.

TABLE-3 

LEARNING RESULTS COMPARISON BETWEEN 
ORIGINAL PSO AND IMPROVE PSO 

Performance index Original PSO Improve PSO 

Iteration times 

Single iteration time (ms) 

Learning time (s) 

6531.7 

0.591 

3.389 

3532.6 

0.901 

3.183 

 
The results show that single-iteration time grows, although

the learning coefficient Metropolis in the improved PSO and

the PSO classification rules increase the amount of compu-

tation. However, this method makes the discovery of PSO

global optimum as soon as possible and reduces the number

of iterations of global optimization and the total optimization

time.

Simulation curve analysis

Comparison of single fault prediction test results: The

decision fusion network adopts Gaussian fuzzy membership

function. The simulation results are shown in Fig. 4.

Fig. 4 is the anode effect fault diagnosis simulation curve.

When the electrolysis cell works normally the cell voltage is

generally about 4.2 V. From the simulation curve point of view,

before 80 min, the simulation curve dose not change signifi-

cantly which means the electrolysis is in normal working

condition. At 80 min, the cell voltage suddenly increased to

30 V, which indicates the anode effect occurred. At 89 min,

cell voltage has back to normal working condition, which

means the anode effect is lift. From the point of the parameters

change of fault diagnosis model, the cell voltage value is about

before 26 min, the fault diagnosis model outputs y1, y2 and y3

are changes between 0 and 0.2, which is relatively stable and

indicate the electrolysis cell is in normal working condition;
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Fig. 4. Simulation curve of anode effect fault diagnosis

During 26-33 min, y3 slightly increased, but the y1 and y2 output

value increases, which is mainly due to outside interference

or electrolytic process operating time make the network input

changes; Y1 output value increases between 50 and 60 min,

but it is useless to reach the limits of the fault prediction. After

1 h, the fault diagnosis model output values y1 is greater than

0.5, which illustrating the anode effects of electrolysis cell,

that making the anode effect prediction permitted; after 80

min, the fault diagnosis model output y1 value is above 0.9,

close to 1. That can be seen the electrolysis cell anode effect

and the forecast is in advance the amount of about 20 min.

Multi-fault simulation prediction analysis: Fig. 5 shows

the experimental simulation curves simultaneously for multiple

fault diagnosis. From the simulation curve it can be seen that

the model output y3 does not change significantly and the

changing range is from 0.1-0.25, then y1 and y2 change. At the

first 25 min, Y1 and y2 output are about 0.1, which illustrates

the electrolysis is no exception in normal working condition;

Y2 output increases between 25 to 45 min and the maximum

increasing value is not more than 0.5. After 45 min, y2 output

value is more than 0.5 which achieves the maximum hot tank

limit predicted value and that indicates fault of the hot tank

will take place, at this time the warning signal of the hot tank

is shown. At the 55th min, y1 and y2 are more than 0.5 limits,

which may be issued prediction value for multi-fault prediction

limits (anode effect and the hot tank occurred simultaneously);

At 73 min y2 output value reaches to 0.9, which indicates the

hot tank occurred. At about 85 min, the anode effect failure

occurs and about 91 min to lift, y1 output is reduced to about

0.2, which means the hot tank is continued.
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Fig. 5. Simulation diagram of complex fault

Conclusion

A modular integrated fuzzy neural network electrolytic

fault diagnosis method is put forward in the paper and the two

layer the fault diagnosis of networks is built which is sub-fault

diagnosis and decision-making fusion diagnosis. Combining

the modular and integrated network (such as fuzzy and neural

network, subnet and information decision-making fusion

network organically), make the sub-fault diagnosis network

modularly are all mixed at this platform.. Using the functions

of neural network nonlinear mapping ability, the capacity of

associative memory, fuzzy reasoning and computing capabi-

lities, fault diagnosis network has a better fault tolerance,

logical reasoning and adaptive ability. In the end, the simulation

results show that by using the method of multi-fault diagnosis

of aluminum electrolysis based on modular fuzzy neural

networks there will be higher accuracy of fault prediction in

advance volume, which verify the validity of the method of

fault diagnosis.
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