
INTRODUCTION

Bioremediation is considered to be the most cost-effective
and environmental friendly technology to treat oil-conta-
minated soil. Meanwhile, many studies have shown that the
introduction of plants could enhance the effect of reme-
diation1,2. The combination of microbe and plants would be
practical and effective. Furthermore, change of microbial
community structure is an important indicator to identify the
effect of remediation. The information of microbial functional
diversity is of great significance to identify microbial commu-
nity in different samples. However, the traditional plate count
method could just detect a part of microorganisms of the
samples, making it difficult for microbiologists to quanti-
tatively describe microbial community. Currently, analyzing
rRNA(rDNA) of the microorganisms and phospholipid fatty
acid PLFAin the samples are two universally accepted tech-
niques to illustrate microbial community functional diversity3.
But these two methods are labour-intensive, time-consuming
and of high technicality, making them difficult to analyze more
samples in a short period of time. The Biolog redox technology
is evaluated as a rapid and community-level method to
characterize and classify heterotrophic microbial communities
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at present.The biolog plates which include GN, GP and ECO
microplates are originally designed to identify bacterial
isolates. In addition to that role, however, the ECO microplates
have been found useful in microbial community studies and
have been widely used to characterize bacterial communities
from various environments, including soil4, freshwater5,
sediments6, activated sludge7 and seawater8. Biolog analysis
based on carbon source utilization on community level rather
than sole carbon source utilization provides a quicker and easier
method to describe metabolic function of microbial commu-
nity5. With the development of molecular biology, more mole-
cular biological techniques are employed to get insight into
modifications of bacterial populations in soils during the
remediation processes. The application of amplified ribosomal
DNA restriction analysis (ARDRA) could provide a way for
examining the successionand convergence/divergence of
microbial communities9. In this study, DNA of different soil
samples are extracted and purified. Then soil bacterial 16S
rRNA clone libraries areconstructed. This research aims to
get insight into the changes of microbial community structure
using ARDRA and analyze the effect of the introduction of
plants and exogenous bacteria on community structure.
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EXPERIMENTAL

Experimental treatments and the determination of

total petroleum hydrocarbons concentration: The experi-
mental soils used for this study were collected from an agricul-
ture field in Beijing, China. And the bacterium Pseudomonas

sp. DG17 (CGMCC: NO. 5052; NCBIaccession No. JN 216878)
used in this study was isolated from petroleum contaminated
soil (Da Gang oilfield, China). The bacterias were in two forms:
immobilized bacteria and bacteria inoculum. Pseudomonas

sp. DG17 was immobilized with 2.5-3.5 % sodium alginate,
0.5-1.5 % attapulgite clay and 2-4 % CaCl2. Soils and bacteria
were both preserved in the refrigerator at 4 ºC. Plant used here
was winter wheat. Meanwhile, no plant and bacteria was
regarded as the control group. All treatments were incubated
in the greenhouse for 126 days.

Biolog analysis: 10 g air-dried soilwas added to a conical
flask with 100 mL sterilized water. The flask was shaken at
250 r min-1 for 1 h and quite for 15 min. The soil suspension
was diluted to ten folds. The supernatant liquid was removed
to a sterilized centrifuge tube and the microplate was preheated
at 25 ºC. Then automated liquid handlerwas used to pipette
soil extractable solution and inoculated to microplates. The
plates were cultured at 30 ºC and after 1, 2, 3, 4, 7, 10 days
colour formation in microplate wells (absorbance at 590 nm)
and analyzed by using the microplate reader.

Average well colour development (AWCD) method was
used to analyzed Biolog data5, soil microorganism community
function diversity index which was also called Shannon index
(H) and microorganism community richness (S). And AWCD
was calculated as follows.
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In this formula, Ci represented colour production within
each well; R represented the absorbance value of the plate’s
control well and n represented the number of substrates (GN
plates, n = 95; ECO plates, n = 31). Samples at the beginning
of the experiment and after 70 days’ degradation were analyzed
by using Biolog technology and the value of AWCD at different
incubation time (24, 48, 72, 96, 120, 168 and 240 h) was com-
pared. The AWCD value of initial samples sharply increased
at 24 h and got stable at around 168 h. As for 70 days’ samples,
the AWCD value also began to rise at 24 h but got stable at
240 h. So the value at 72 h of the initial samples while at 96 h
of 70 days’ samples was chosen to analyze.
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In this study, Shannon-Wiener diversity index (H), evenness
index (E), carbon source utilization richness index (S) and
AWCD were chosen to represent microbial population diversity
and indicate the changes of microbial community composition.
Data treatments were performed using Excel 2010 and SPSS
17.0 for windows.

16S rDNA identification and the constructing of 16S

rRNAclone library: In this study, the DNA of strain DG17
was extracted using DNA extracted kit (Biomed, Beijing,
China). The 16S rDNA fragments obtained with the primers
27F (5’-AGAGTTTGATCCTGGCTCAG-3’)and1492R(5’-
CGGTTACCTTGTTACGACTT-3’) of the treatments selected
were used to clone and construct 16S rDNA libraries. Details
of cloning procedure could be found in the study of Valenzuela-
Encinas et al.10.

Amplified ribosomal DNA restriction analysis

(ARDRA) and constructing phylogenetic tree: The seque-
ncing results of every operational taxonomic unit (OTU) were
submitted to GenBank database of NCBI using the Basic Local
Alignment Search Tool (BLAST) algorithm to find their nearest
neighbor in order to roughly determine their phylogenetic
affiliation. Then phylogenetic trees were generated usingthe
MEGA 4.1 software11.

RESULTS AND DISCUSSION

Changes of total petroleum hydrocarbon (TPH)

concentration in different soil samples with time: As shown
in Fig. 1, winter wheat and immobilized bacteria Pseudomonas

sp. DG17 had the best effect on petroleum biodegradation.
After 70 days,the petroleum hydrocarbondecreased from
30520-25000 mg/kg in the soil which meant 18.09 %
petroleum hydrocarbon was biodegraded. As for winter wheat
and bacteria inoculum, 16.78 % petroleum hydrocarbon in
the soil was biodegraded which also indicated that combined
remediation had great potential in repairing crude oil polluted
soil. While in the control group only 12.83 % petroleum hydro-
carbon was biodegraded.
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Fig. 1. Changes of TPH content of the soil during the remediation process

Microbial community changes during the combined

remediation process: As shown in Table-1, four indicators in
different treatments didn’t present much difference. However,
all indexes of all treatments in the initial samples were higher
than that of the control group. Moreover, Shannon-Wiener
diversity index, carbon source utilization richness as well as
average well colour development in winter wheat and immo-
bilized bacteria sample were the highest. As shown in Table-
2, there were some changes in two treatments and the control
group during the remediation process. Compared with the
initial samples, the value of Shannon-Wiener diversity index
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(H) in winter wheat and immobilized bacteria treatment
increased from 3.21 to 3.28 after 70 days. While the value of
H in winter wheat and bacteria inoculum treatment decreased
from 3.19 to 3.03. Meanwhile, the carbon source utilization
richness index (S) in this treatment also decreased from 27-21
during the combined remediation process.

The reasons of the highest values in winter wheat and
immobilized bacteria treatment both in initial samples and later
samples might be that immobilized bacteria could resist
adverse environment. Hence the microorganism in this treat-
ment could take advantage of carbon source effectively and
the diversity of microorganisms in soil was also more abundant
with the degradation of petroleum hydrocarbon. As for the
winter wheat and bacteria inoculum treatment, several micro-
organisms which didn’t have the oil resistance or were unable
to compete with the indigenous microorganisms couldn’t
survive from the oil. So the values of H and S decreased in this
treatment.

Overall, it was apparent that the modifications of bacterial
community structure were related with the petroleum hydro-
carbon. And the existence form of the bacterial would also
influence the community structure.

Change of microorganism genetic diversity during the

combined remediation process: As shown in Fig. 2, the
bacterial genus varied a lot during the remediation process.
After 70 days, γ proteo bacteria dominated the community in
two treatments as well as the control group. For instance, in
winter wheat and immobilized bacteria treatment the ratio of
γ-proteo bacteria to the whole microbial community increased
from 20 to 72.7 %. In addition, after 70 days’ degradation the
amount of petroleum-degrading bacteria as well as the species
in the clone library changed a lot while the number of microbial
groups in wheat and immobilized bacteria treatment decreased
and that increased in winter wheat and bacteria inoculum
treatment. It might be because those bacteria which didn’t have
oil resistance couldn’t survive or some microbes varied during
the remediation process, which both meant the oil acted as a
filter in the process.

And the presence of γ-proteo bacteria had been reported
in studies which was carried out on beaches contaminated after
the Nakhodka spillaccident in the Sea of Japan12, on beach
sediment microcosms contaminated with oil13 and on microbial
mats exposed to high nated with oil13 and on microbial mats
exposed to high pollution levels14. Moreover, different organisms
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TABLE-2 
DIVERSITY INDICES FORSOIL MICROBIAL COMMUNITIES AND AWCD OF 96 h AFTER 70 DAYS’DEGRADATION 

Sample Shannon-Wiener diversity 
index (H) 

Evenness 
index (E) 

Carbon source utilization 
richness index (S) 

AWCD of 
96 h 

Winter wheat and immobilized bacteria 3.28 ± 0.02 0.98 ± 0.01 28.00 ± 0.00 1.44 ± 0.13 
Winter wheat and bacteria inoculum 3.03 ± 0.05 1.00 ± 0.01 21.00 ± 1.41 0.75 ± 0.02 
The control 3.08 ± 0.08 1.00 ± 0.00 22.00 ± 1.41 0.89 ± 0.10 
 

TABLE-1 
DIVERSITY INDICES FOR INITIAL SOIL MICROBIAL COMMUNITIES AND AWCD OF 72 h 

Sample Shannon-Wiener 
diversity index (H) 

Evenness index 
(E) 

Carbon source utilization 
richness index (S) 

AWCD of 
72 h 

Winter wheat and immobilized bacteria 3.21 ± 0.02 0.97 ± 0.01 27.50 ± 0.71 1.29 ± 0.48 
Winter wheat and bacteria inoculum 3.19 ± 0.03 0.97 ± 0.00 27.00 ± 1.41 1.14 ± 0.23 
The control 3.00 ± 0.07 0.96 ± 0.01 22.50 ± 0.71 0.75 ± 0.09 
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Fig. 2. Microbial community structure of different samplesrevealed by 16S
rRNA cloning

such as Marinobacter, Halomonas and Alcanivorax, all belon-
ging to the γ proteo bacteria group were known as hydrocarbon-
degrading bacteria and were frequently found in marine
environments contaminated with oil12. It can be concluded that
the dominance of γ aproteo bacteria was a characteristic of
bacterial communities inhabiting environments contaminated
with petroleum compounds and γ proteo bacteria had the resis-
tance of oil contamination on some level.

As shown in Figs. 3-5, several bacteria which could degrade
the petroleum hydrocarbon were identified by analyzing
nucleotide sequences. It can be seen that there were a certain
proportion of petroleum-degrading bacteria such as uncultured
Xanthomonassp (AM934771) and Staphylococcus haemolyticus

(HQ699551) which could effectively degrade petroleum
hydrocarbons at the beginning of the experiment. Then after
70 days’ degradation, there were pyrene-degrading bacteria
and anthracene-degrading bacteria in the samples. For example,
uncultured Lysobacter sp. clone T311E2 (HM438538) and
uncultured Lysobacter sp. clone T302F04 (HM438526) were
both anthracene-degrading bacteria and they could be found
almost in every treatment. Similarly, Alcanivorax sp. (DQ659451)
was found in all treatments and it could effectively degrade
pyrene, a kind of polycyclic aromatic hydrocarbons. Meanwhile,
after 70 days’ degradation the amount of petroleum-degrading
bacteria as well as the species in the clone library changed a
lot. And the ratio of the petroleum-degrading bacteria to the
total number of bacteria also increased. It was because the
petroleum was screening the petroleum-degrading bacteria to
some extent during the reaction. Those bacteria which could
degrade the petroleum could survive better.
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Apart from the petroleum-degrading bacteria, there were
also other functional microorganisms after 70 days. For instance,
Alcaligenes sp. (HM468087) which was closely related to
a strain isolated from atannery polluted by chromium was

3284  Wang et al. Asian J. Chem.
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Fig. 5. Phylogenetic tree ofthe bacteria in control test soil, (a) initial soil
(b) soil after 70d degradation

found in winter wheat and immobilized bacteria treatment.
Obviously, it could resist a certain concentration of chromium.
And in the conditions of winter wheat and bacteria inoculum,
denitrifying-dephosphorized bacteria-comamonasaquatica
strain DNPA9 (FJ404812) which was belonging to Betaproteo
bacteria was found.

Conclusion

In winter wheat and immobilized bacteria treatment, the
removal rate of total petroleum hydrocarbon and the value of
Shannon-Wiener diversity index both was the highest, which
indicated that the immobilized bacteria could resist the adverse
environment better than the bacteria inoculum.Meanwhile,
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bacteria species or strains in this treatment increased most.
Moreover, the number and types of petroleum-degrading
bacteria changed a lot after 70 days in all treatments. Anthracene
degrading bacteria, pyrene degrading bacteria and other func-
tional bacteria appeared after 70 days’ degradation.

Based on the above research, it may be concluded that
microorganism function diversity and gene diversity in all
treatments changed a lot with the degradation of petroleum
hydrocarbons. Further studies establishing links between
different experimental conditions including soil types, moisture,
soil nitrogen as well as phosphorus contents and community
structure will provide more comprehensive insight into the
microbial community structure during the combined reme-
diation.
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