
INTRODUCTION

Prochloraz (N-propyl-N-[2-(2,4,6-trichlorophenoxy)-

ethyl]-1H-imidazole-1-carboxamide) (Fig. 1), as an imidazole

broad spectrum fungicide, suppresses the biochemical and

physiological metabolism of the target phytopathogenic fungi

by inhibiting sterol biosynthesis1. Due to its relatively low

toxicity, prochloraz is widely used for protecting cereal crops,

fruits, field legumes and beet2 against eyespot fungus. However,

recent studies reported that prochloraz has been shown to act

via multiple mechanisms of action in vitro as it antagonizes

the androgen and the estrogen receptor, agonizes the arylhydro-

carbon receptor and inhibits aromatase activity3,4. Its residual

metabolites 2,4,6-trichorophenol also has toxicity of mutage-

nicity and carcinogenicity5. So a series of analytical methods

have been applied to detect the prochloraz residue such as

high performance liquid chromatography and gas chromato-

graphy6. Although these methods show high sensitivity and

accuracy, they have several drawbacks which can not neglected:

Firstly, large amount of organic solvents is used which is

environmentally unfriendly. Secondly, the sample preparation

is always tedious and time-consuming. Therefore, they are not

suitable for the rapid on-site detection.
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Fig. 1. Structure of prochloraz

Near Infrared Spectroscopy (NIRS) is a good alternative,

because it is a fast, low cost, non-destructive method. No sample

preparation is needed for NIRS, thus no organic solvents are

involved, providing a safe working environment. NIRS has

grown widely in use for qualitative and quantitative analysis.

In recent years, quality control of pesticide products7, detection

of pesticide residues in soil8 and agriculture products9 have

been successfully performed by NIRS.

In this study, the feasibility of detecting prochloraz residue

in water using NIRS was investigated. Since NIRS mainly

contains information of vibrations of -CH, -OH, -NH and -SH

bonds, which are the results of overtones or combinations of

the fundamental mid-infrared bounds10, the use of chemo-

metrics is necessary to extract relevant information from the

overlapped bands of the NIRS. In this study, a changeable

size moving window partial least-squares (CSMW-PLS)
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method was used for variables selection. The selected variables

were applied as inputs to partial least-squares discriminant

analysis (PLS-DA). The proposed method was applied to the

analysis of prochloraz in tap water and lake water samples.

EXPERIMENTAL

A multipurpose analyzer transform near infrared spec-

trometer YDZ1-1 (Nanjing Zhongdi Instruments Co., Ltd.,

Nanjing, China) was used in this study. Spectra treatment and

data manipulation were performed using software MATLAB

7.5 (Math Works Inc. Natick, USA) with PLS Toolbox 5.8

(downloaded from http://www.eigenvector.com/software/

pls_toolbox.htm.)

Prochloraz (97 % purity) was purchased from Institute

for the Control of Agrochemicals, Ministry of Agriculture

(ICAMA). Bottled water (Guangdong Robust Co. Ltd. China)

was obtained from a local supermarket. Tap water and lake

water were collected from our laboratory and the Huashen

Lake (Nanjing, China), respectively. All the samples were

filtered through 0.2 µm filter twice prior to detection.

Samples preparation: Stock solution of prochloraz (1000

µg mL-1)) was prepared in double-distilled water. The working

solution of prochloraz samples were prepared by diluting

different amounts of the standard stock solution with water

(double-distilled water, tap water and lake water, respectively)

to the varying concentrations (1-200 µg mL-1).

Spectral acquisition: A volume of 1.4 mL of the prepared

sample was transferred to a glass vial, which was used as the

measurement cell. Spectrum was recorded from the wavelength

of 1100 nm (9090.909 cm-1) to 2300 nm (4347.8261 cm-1) at a

nominal resolution of 2 cm-1. The number of scans per spectrum

is 2. Samples were analyzed in transflection mode, which was

a hybrid of transmission and reflection. In this mode, a gold-

coated reflector was placed behind the sample so that the

optical path through the sample and back to the detector was

doubled compared to a transmission measurement of a sample

of the same thickness.

Data analysis procedure: In this study, the PLS-DA

analysis method coupled with CSMW-PLS was used in the

data analysis procedure. The specific steps were as follows:

(1) the calibration set and prediction set was selected, (2) an

appropriate method for data pre-processing was selected, (3)

a correct variables region was selected, (4) the level of

boundary was selected, (5) the data was imported, (6) analysis

parameters was selected, (7) results was obtained.

Theory and algorithm

Partial least-squares discriminant analysis: PLS-DA

is a classification method based on modelling the differences

between several classes with PLS. It is essentially the inverse-

least-squared approach to Linear Discriminate Analysis (LDA)

and produces essentially the same result but with the noise

reduction and variable selection advantages of PLS. By rotating

principle components analysis (PCA), maximum separation

among clusters can be achieved. In PLS-DA, PLS is used to

develop a model that can predict the sample from different

group. Each sample is assigned a dummy variable as a refe-

rence value, which is an arbitrary number or letter describing

a particular sample group. For the present study, dummy

variables of 0 and 1 were given to the NIR spectra of prochloraz-

free water and prochloraz-containing water. Thereafter, the

PLS model was calculated in the usual way11 and the classifi-

cation was then done based on a Bayesian approach using the

scores obtained from PLS. The model, of course, would not

predict either a 1 or 0 accurately. A limit must be set, which is

named threshold and is given by PLS-DA program. In the

model used in this study, the threshold was set to 0.5 given by

the PLS-DA program. Above the threshold, the sample was

estimated as 1 and below the threshold, it was estimated as 0.

To validate the model, two methods were used e.g., cross-

validation and outer-validation. Leave-one-out is one important

method of cross-validation. In the validation, all samples in

calibration set except one were used to construct the calibration

model and then the model was used to predict the remained

one sample. The procedure was repeated, leaving out each of

the samples from the calibration set in turn. The root-mean-

square-error of cross validation (RMSECV) was calculated

for every model. The number of PLSDA factors could also be

selected according to the lowest RMSECV.

Upon building the model and testing it against a validation

set for outer validation, the root mean square error of calibration

(RMSEC) and the root mean square error of prediction (RMSEP)

were calculated. The RMSEC and RMSEP measured how well

the calibration data fitted the model and the expected error

associated with future testing, respectively. In general, the

classification accuracy was higher, when smaller RMSEC,

RMSECV and RMSEP values were obtained.

Changeable size moving window partial least -squares:

Studies reported NIR spectra always comprise substantial

information derived from sample attributes, as well as environ-

mental and instrumental variables12. So, it is crucial that

informative variables must be selected to construct a robust

model, which can improve modelling efficiency and prediction

accuracy13. Variable selection can also make the model simpler

and obtain a better interpretation and lower measurement

system costs14. So far, there are many effective methods for

variable selection. Moving window wavelength selection is

one of them, which is a strategy to obtain informative spectral

regions for producing better prediction results15. Moving

window partial least-squares (MW-PLS) was firstly introduced

by Jiang et al.16. They demonstrated, based on a proposed

theory providing the necessity of wavelength selection that

MW-PLS proved to be a viable approach to eliminate the extra

variability generated by non-composition related factors. In

MW-PLS regression17, a spectral window commencing at

certain (i)th spectral channel and terminating at the (i + H-1)th

spectral channel is built, in which H is the window size. PLS

models with varied numbers of PLS components can then be

built to relate the spectrum in the window to the analytes of

interest. The window is moved through the entire spectrum.

At each position, the RMSECVs are obtained from calculation

with the PLS models and plotted as a function of the position

of the window. A figure containing such residual lines is plotted

and the plot provides information about informative regions.

Based on MWPLS, changeable size moving window partial

least squares (CSMWPLS)18 is a new method used to optimize

an informative region, i.e., to search for an optimized sub-

region in a selected informative region. Its superiorities to
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MWPLS are: The window size is changeable and the window

is moved over the whole spectral region with fixed step. The

specific process of the CSMW-PLS method is as follows:

A spectral window that starts at the (i)th spectral channel

and ends at the (i + w - 1)th spectral channel is constructed,

where w is the window size. The window size varies at an

adjustable increment. The window is moved over the whole

region with a step of 1. There are (n - w + 1) windows over the

whole spectra, with each window corresponding to a subset

of the original spectral X. Fig. 2 explains this algorithm. PLS

models can be built with varying LVs numbers from 1 to a

fixed value k and then RMSECV is calculated for each subset.

After calculations for all the subsets, the region with lowest

RMSECV is chosen as the informative region.

w=5

w=10

w=p

i i+w-1 i+1 i+w

Fig. 2. Specific process of CSMW-PLS algorithm

In this study, the CSMW-PLS method was used. The window

size varied from 20 to 600 with a step of 1. The max Latent

Variable number was 8 and leave-one-out cross validation

method was utilized. Meanwhile, CSMW-PLS procedure was

coupled with PLSDA to improve the performance of individual

models and reduce the size of datasets in calibration and

prediction processes.

RESULTS AND DISCUSSION

All 155 water samples were divided into two subsets

randomly. The calibration set, which was used to build the

model, had 104 samples including 26 prochloraz-free samples

and 78 prochloraz-containing samples. The prediction set was

formed by the remaining 51 samples including 12 prochloraz-

free samples and 39 prochloraz-containing samples. Table-1

showed the descriptive statistics (mean, standard deviation and

range) of samples used for calibration of the PLS-DA models

and their prediction.

The mean spectra of water sample with prochloraz at various

concentrations are shown in Fig. 3. As can be seen, the shapes

of the mean spectra of all samples are nearly the same. It is

difficult to find specific band to discriminate whether

prochloraz was included in the aqueous samples since NIR

bands are severely overlapped due to overtones and combina-

tion modes. Moreover, the existence of the interference of

irrelevant compounds, such as solvent and impurities make

the data analysis more complex. So before the calibration stage,

the spectral data should be pre-processed to find out how the

spectra vary with the concentrations of prochloraz. The methods

TABLE-1 
CHEMICAL CHARACTERIZATION OF CALIBRATION  

AND PREDICTION SET FOR MODELLING 

 
Number of 

samples 

Mean  

(µg mL-1) 

S.D.a  

(µg mL-1) 

Calibration set 104 35.7 49.1 

Prediction set  51 36.4 50.1 
aStandard deviation 

 

of autoscale, orthogonal signal correction, standard normal

variate and first derivative were used for data pre-processing

in this study. Fig. 4 showed the change of the RMSECV with

latent variable number when using different data pre-processing

methods. Due to the lowest RMSECV value, autoscale was

selected as the data pre-processing method. Moreover, the

number of PLS-DA factors could be also selected from Fig. 4.

The cross-validation suggested that up to 9 principle compo-

nents (Pcs) might be best. So 9 Pcs were chosen for the final

model. After data-processing, the small spectral difference of

water samples with prochloraz at various concentrations could

be found, as shown in Figs. 5 and 6. From Fig. 6, absorption

peak near 1340 nm shows the C-H stretch second overtones.
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Fig. 3. Mean spectra of prochloraz at various concentrations (concentration

unit: µg mL-1)
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Fig. 4. Change of the RMSECV with the latent variable number when using

different data pre-processing methods

CSMW-PLS algorithm was then used to find the correct

variable region. The window size varied from 20 to 600 with

a step of 1, the max Latent Variable number was 8 and cross

validation method was leave-one-out. The wavelength region

was 1274-2300 nm.

1 µg mL-1 was set as the level of boundary. It means that

the water samples with concentration below 1 µg mL-1 were

assigned a dummy value 0 and others were assigned 1.
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Fig. 5. First derivative spectra with prochloraz at different concentrations
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Fig. 6. Absorption peak of C-H stretch second overtones of prochloraz at

different concentrations

Fig. 7 shows the classification scatter gram of PLS-DA.

As can be seen intuitively: (1) the threshold given by PLS-DA

was 0.5, which was represented by red dotted line, (2) black

triangle points representing the prochloraz-free sample were

located under the red dotted line, (3) red circle points represen-

ting the prochloraz-containing sample were located up the red

dotted line, (4) the gap between the blank samples and the

contaminated samples were very large. From the figure, a

conclusion could be given that the classification accuracy was

100 %. The limit of detection (LOD) of this method was as

low as 1 mg kg-1. After further calculation, a good correlation

coefficient of 0.95 between measured and reference data was

obtained.
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Fig. 7. Predicted results of water samples using PLS-DA, ("o", prochloraz-

containing water sample; " ", prochloraz-free water sample)

Application of the technique: In order to testing and

applying the proposed technique, the procedure was applied

to the analysis of prochloraz in real water samples (tap water

and lake water samples). Each kind of water included 5 samples

and all of them have been filtered through a 0.2 µm pore size

Millipore filter prior to NIRS analysis. The prediction values

of all samples were below 0.5, which indicated no prochloraz

was found in the actual water. The results were verified by a

HPLC method. And tap water and lake water samples con-

taining prochloraz at a concentration of 5 µg mL-1 were also

analysed. The prediction values of these samples exceed 0.5,

which indicated prochloraz was found in these samples. It

showed that the method was potential to accurately predict

whether prochloraz was existed in environmental water samples.

Conclusion

In the study, the feasibility of detecting prochloraz residue

in water based on NIRS combined with PLS-DA was investi-

gated. A CSMW-PLS method was used for variable selection.

Without sample preparation, the method gave satisfactory

classification accuracy of 100 % and a good correlation

coefficient of 0.95 between measured and reference data. The

LOD of this method was as low as 1 mg kg-1. The excellent

result showed that the method was a rapid and highly effective

potential alternative to conventional determination of prochloraz

residues in water.
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