

ASIAN JOURNAL OF CHEMISTRY

http://dx.doi.org/10.14233/ajchem.2013.14328

Synthesis and Crystal Structure of 4,4'-Dichloro-6,6'-dibromo-2,2'-[(hexane-1,6-diyldioxy)bis(nitrilomethylidyne)]diphenol

Qiong Su^{1,*}, Peng-Fei Liu², Yu-Jie Zhang², Li Zhao², Xiu-Yan Dong² and Yan-Bin Wang^{1,*}

¹School of Chemical Engineering, Northwest University of nationalities, Lanzhou 730030, P.R. China ²School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China

*Corresponding author: E-mail: ybwang@126.com

(Received: 19 July 2012;

Accepted: 18 March 2013)

AJC-13130

The compound 4,4'-dichloro-6,6'-dibromo-2,2'-[(hexane-1,6-diyldioxy)bis(nitrilomethylidyne)]diphenol with the molecular formula $C_{20}H_{20}N_2O_2Br_2Cl_2$, is central symmetric structure and two phenyl rings in each molecule are parallel to each other. Two intramolecular O2-H2···N1 hydrogen bonds involving the hydroxyl groups and oxime N atoms generate two S(6) ring motifs in each molecule. In the crystal structure, each molecule interlinks two neighboring molecules into a 1D infinite chain supramolecule through two intermolecular C8-H8···Cl1 hydrogen bonds.

Key Words: Salen-type bisoxime, Synthesis, Crystal structure.

INTRODUCTION

Salen and its analogues are most versatile chelate ligands in inorganic and organometallic chemistry. Their complexes can be used in many areas, such as medical imaging¹, inorganic biochemistry², optical materials³ and catalysis⁴. In this paper, we report on the synthesis and crystal structure of a salentype bisoxime compound, 4,4'-dichloro-6,6'-dibromo-2,2'-[(hexane-1,6-diyldioxy)bis(nitrilomethylidyne)]diphenol.

EXPERIMENTAL

3-Bromo-5-chloro-2-hydroxybenzaldehyde was purchased from Alfa Aesar and used without further purification. 1,6-Bis(aminooxy)hexane was synthesized according to an analogous method reported earlier⁵. The other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory. C, H and N analyses were carried out with a GmbH VariuoEL V3.00 automatic elemental analyzer. X-ray single crystal structure was determined on a Bruker Smart 1000 CCD area detector. Melting points were measured by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company and the thermometer was uncorrected.

General procedure: 4,4'-Dichloro-6,6'-dibromo-2,2'-[(hexane-1,6-diyldioxy)- *bis*(nitrilomethylidyne)]diphenol was synthesized according to an analogous method reported earlier⁶. To an ethanol solution (8 mL) of 3-bromo-5-chloro-2-hydroxybenzaldehyde (158 mg, 0.67 mmol) was added an ethanol solution (3 mL) of 1,6-*bis*(aminooxy)hexane (49.0 mg,

0.33 mmol). The reaction mixture was stirred at 328 K for 4 h. The formed precipitate was separated by filtration and washed successively with ethanol/n-hexane(1:4) and n-hexane. The product was dried under vacuum to yield 145.1 mg of the title compound. Yield, 75.4 %. m.p. 493-494 K. Anal. calcd. (%) for $C_{20}H_{20}N_2O_2Br_2Cl_2$: C, 41.20; H, 3.46; N, 4.80. Found (%): C, 41.42; H, 3.54; N, 4.63.

The title compound was dissolved in chloroform/ethol (1:1) solution and allowed to stand at room temperature for about several weeks, colourless needle-like single crystals suitable for X-ray crystallographic analysis were obtained.

X-Ray structure determination: The single crystal of the title compound, with approximate dimensions of 0.53 mm \times 0.40 mm \times 0.15 mm was placed on a Bruker Smart 1000 diffractmeter equipped with Apex CCD area detector. The diffraction data were collected using a graphite monochromated MoK $_{\alpha}$ radition ($\lambda=0.71073~\text{Å})$ at 298(2) K. The structure was solved by using the program SHELXS-97 and Fourier difference techniques and refined by full-matrix least-squares method on F^2 using SHELXL-97. Details of the data collection and refinements of the title compound are given in Table-1. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically. CCDC:712158.

RESULTS AND DISCUSSION

X-Ray crystallographic analysis revealed the crystal structure of the title compound. And the structure is shown in Fig. 1. Selected bond distances and angles are listed in Table-2.

5034 Su et al. Asian J. Chem.

TABLE-1				
CRYSTAL DATA AND STRUCTURE				
REFINEMENT FOR THE TITLE COMPOUND				
Empirical formula	$C_{20}H_{20}N_2O_2Br_2Cl_2$			
Formula weight	583.10			
Temperature (K)	298(2)			
Wavelength (Å)	0.71073			
Crystal system	Triclinic			
Space group	P –1			
Cell dimensions, (Å, deg)	a = 4.5419(10), b = 8.0851(14), c			
	= $15.660(2)$, $\alpha = 76.9600(10)$, β			
	$= 84.470(2), \gamma = 86.470(2)$			
Volume (ų)	557.17(17)			
Z	1			
Density (calculated) (mg/m³)	1.738			
Absorption coefficient (mm ⁻¹)	3.907			
$F_{(000)}$	290			
Index ranges	$-5 \le h \le 5, -9 \le k \le 5, -18 \le 1 \le 18$			
Reflections collected	$2358/1946 [R_{(int)} = 0.0477]$			
Independent reflections	1385			
Data/restraints/parameters	1946/0/137			
Goodness of fit indicator	1.063			
$R[I > 2\sigma(I)]$	$R_1 = 0.0356$, $wR_2 = 0.1026$			
Largest diff. peak and hole (e Å ⁻³)	0.672 and -0.865			

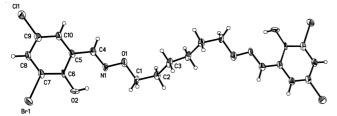


Fig. 1. Molecule structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30 % probability level

The title compound crystallizes in the triclinic system, space group P-1 and the unit cell contains only one crystallographically molecule. There is a trans configuration with respect to the methylidene unit. The two phenyl rings in each molecule are parallel to each other with a perpendicular interplanar spacing of ca. 2.647(3) Å.

There are two intramolecular O2-H2···N1 hydrogen bonds (Table-3) involving the hydroxyl groups and oxime N atoms generate two S(6) ring motifs in each molecule $^{7-10}$. In the crystal

TABLE-3							
HYDROGEN BONDS [Å, °] FOR THE TITLE COMPOUND							
D-H···A	d(D-H)	d(H···A)	∠DHA	$d(D \cdot \cdot \cdot A)$			
O2-H2···N1	0.82	1.94	146	2.662(3)			
C8-H8···Cl1	0.93	2.84	165	3.746(3)			

structure, each molecule interlinks two neighboring molecules into a 1D infinite chain supramolecule through two intermolecular C8-H8···C11 hydrogen bonds. A view of the crystal packing for the title compound is given in Fig. 2.

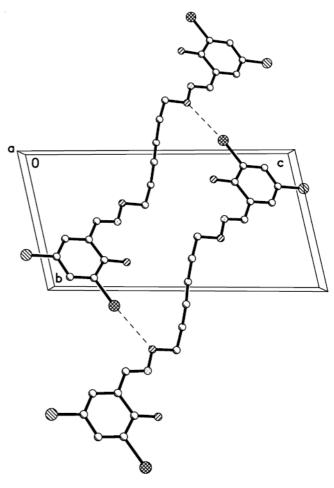


Fig. 2. A view of the crystal packing for the title compound

TABLE-2								
SELECTED BOND DISTANCES (Å) AND ANGLES (°) FOR THE TITLE COMPOUND								
Bond	Lengths	Bond	Lengths	Bond	Lengths			
Br(1)-C(7)	1.914(17)	C(1)-C(2)	1.49(2)	C(6)-C(7)	1.39(2)			
Cl(1)-C(9)	1.74(2)	C(2)-C(3)	1.55(3)	C(7)-C(8)	1.40(3)			
N(1)-C(4)	1.30(2)	C(3)-C(3)	1.49(3)	C(8)-C(9)	1.36(3)			
N(1)-O(1)	1.344(19)	C(4)-C(5)	1.42(2)	C(9)-C(10)	1.34(3)			
O(1)-C(1)	1.43(2)	C(5)-C(10)	1.41(3)	-	_			
O(2)-C(6)	1.34(2)	C(5)-C(6)	1.45(2)	-	-			
Bond	Angles	Bond	Angles	Bond	Angles			
C(4)-N(1)-O(1)	115.0(15)	C(10)-C(5)-C(6)	117.7(15)	C(8)-C(7)-Br(1)	118.9(12)			
N(1)-O(1)-C(1)	111.1(13)	C(4)-C(5)-C(6)	122.5(17)	C(9)-C(8)-C(7)	116.1(16)			
O(1)-C(1)-C(2)	112.5(16)	O(2)-C(6)-C(7)	121.7(15)	C(10)-C(9)-C(8)	123.9(19)			
C(1)-C(2)-C(3)	112.1(15)	O(2)-C(6)-C(5)	121.8(15)	C(10)-C(9)-Cl(1)	120.0(15)			
C(3)-C(3)-C(2)	109.7(18)	C(7)-C(6)-C(5)	116.5(16)	C(8)-C(9)-Cl(1)	116.1(15)			
N(1)-C(4)-C(5)	121.9(16)	C(6)-C(7)-C(8)	124.4(16)	C(9)-C(10)-C(5)	121.4(17)			
C(10)-C(5)-C(4)	119.8(15)	C(6)-C(7)-Br(1)	116.7(14)	-	-			

REFERENCES

- J. Tisato, F. Refosco and F. Bandoli, Coord. Chem. Rev., 135-136, 325 (1994)
- E.C. Niederhoffer, J.H. Timmons and A.E. Martell, Chem. Rev., 84, 137 (1984).
- 3. P.G. Lacroix, Eur. J. Inorg. Chem., 2, 339 (2001).
- S. Akine, T. Taniguchi and T. Nabeshima, Angew. Chem. Int. Ed. Engl., 41, 4670 (2002).
- 5. W.K. Dong, G. Wang, S.S. Gong, J.F. Tong, Y.X. Sun and X.H. Gao, Transition Met. Chem., 37, 271 (2012).
- W.K. Dong, X.N. He, H.B. Yan, Z.W. Lv, X. Chen, C.Y. Zhao and X.L. Tang, *Polyhedron*, 28, 1419 (2009).
- H.L. Wu, X.C. Huang, J.K. Yuan, F. Kou, F. Jia, B. Liu and Y. Bai, Z. Naturforsch., 66b, 1049 (2011).
- 8. W.K. Dong, Y.X. Sun, Y.P. Zhang, L. Li, X.N. He and X.L. Tang, *Inorg. Chim. Acta*, **362**, 117 (2009).
- W.K. Dong, J.G. Duan, Y.H. Guan, J.Y. Shi and C.Y. Zhao, *Inorg. Chim. Acta*, 362, 1129 (2009).
- H.L. Wu, K.T. Wang, F. Kou, F. Jia, B. Liu, J.K. Yuan and Y. Bai, *J. Coord. Chem.*, 64, 2676 (2010).