
INTRODUCTION

Polyethylene (PE), which is widely applied in chemical

lines, is a thermoplastic polymer consisting of long chains

produced by combining the ingredient monomer ethylene. The

chemical equation of this polymerization process is as follows:

n22
Catalyst

22 ]CHCH[CHnCH −−− →= (1)

Polyethylene is classified into several categories based

mostly on its density and branching and the mechanical properties

of polyethylene depend significantly on variables such as the

type and length of branching, the crystal structure and the

molecular weight. As measuring the weight of molten volume

is easier than measuring molecular weight, melt index (MI),

(the amount of molten polymer that can be squeezed through

a standard orifice in 10 min) is usually used to represent the

molecular weight. It is also not facile to measure the density

of polyethylene resins directly, so soft-sensing methods have

been proposed recently to calculate melt index and density in

real time to control the grade and quality of products.

Generally, neural networks have been utilized for soft-

sensing in many applications1,2. Unlike conventional statistical

methods, neural networks are data driven, nonparametric, weak

models which let ''the data speak for themselves''3. For example,

Li and Liu4 succeeded in predicting melt index of polypropylene

(PP) polymerization process using radial basis function (RBF)

network4. Radial basis function-neural network (RBFNN) was

also employed in Yang's work to calculate melt index and density
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of polyethylene1. However, methods of this kind suffer from

several weaknesses, such as the need for a large number of

training samples, difficulty in reaching a global optimum and

the danger of over-fitting.

In this study, support vector regression is employed to

build prediction model due to its outstanding performance and

attractive principle of structure risk minimization5. It finds a

good balance between empirical error and expected error. This

balance eventually leads to better generalization than other

neural network models. Additionally, the SVR training process

is equivalent to solving linearly constrained quadratic progra-

mming problems and the optimal solution is unique thus

unlikely to generate local minima just as neural network

method. This strategy was adopted in Cao's study for time

series forecasting6. And a modified SVR method was utilized

to predict melt index in Shi's work7.

Although SVR model is sufficient to acquire satisfying

prediction results, some improvement can still be observed if

feature extraction step such as PCA, independent component

analysis (ICA) and factor analysis (FA) is carried out previ-

ously. For example, Fataei adopted factor analysis to extract

variables of more significant information in heavy mental and

agricultural toxics monitoring8.

EXPERIMENTAL

Support vector regression: For linear support vector

regression, a decision function has the following form:
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x is input data. w, b are parameters to be determined. SVR

estimates the function by minimizing the regularized risk

function:
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y is output variable. The first term ||w||2 is called the regular-

ized term and minimizing it will make a function as flat as

possible. The second term ∑
=
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 is the empirical

error which is measured by the ε-insensitive loss function

defined as follows:
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l is the number of data points and C is referred to as the

regularization constant which plays a trade-off between the

regularized term and the empirical error.

While introducing margin slack variable ξ and ξ∗, eqn. 3

can be rewritten as:

l...,,1i,0,

bwxy

bwxy.t.s

)(
l

1
C||w||

2

1
min

*

ii

iii

iii

l

1i

*

ii

2

=≥ξξ

ξ+ε≤++−

ξ+ε≤−−

ξ+ξ+ ∑
=

(5)

This is the primal problem and its dual problem is:
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where ai, ai
* are Lagrange multipliers.

For nonlinear regression, the main idea is to map the

input data x into a higher dimensional feature space by some

function Φ(x) and calculate the linear regression there5, thus

the decision function is of the following form:

b)x(w)x(f +Φ= (7)

and inner product <xi, xj> in eqn. 6 is replaced by K(xi, xj).

K(xi, xj)  is defined as the kernel function. In this paper, RBF

kernel is employed and in general it is the reasonable first

choice9. However, there are two parameters to be determined

while choosing RBF kernel: C and γ. C is the regularization

variable mentioned above which tries to get a balance between

empirical risk and good generalization. γ is the kernel para-

meter for RBF kernel function which is defined as:

2||yx||e)y,x(K −γ−= (8)

The issue of parameters selection is discussed in the follow-

ing section. Through SVR, we can construct the soft computing

model by which MI and density can be calculated according

to the input process data. Further, the feature extraction step

should be introduced for the dimension of original data is as

large as up to 29 and there must exist correlation and noise in

these data. By feature extraction, the prediction precision is

expected to be improved to some extent.

Principal component analysis: Principal component

analysis is designed to extract features from inputs. It trans-

forms data from high dimension space into a lower one wherein

the components are uncorrelated. So, principal component can

describe original data with reduced form and minimum loss

of important information10. With a given data set ,RX nm×∈

m refers to the number of observations and n denotes the

number of process variables or model indicators, the PCA

decomposition of X is as follows:
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The vectors 1n
i Rp ×∈  are the loading vectors and they

are orthogonal to each other. Vector 1m
i Rt ×∈  is principal

component, also called score vector. It is the projection of

data X onto vector pi. That is:

ii Xpt = (10)

nmRE ×∈ is residual matrix representing the PCA model

prediction error. Usually it is caused by measurement noise,

so if we discharge it by only picking up the first several

principal components, we can extract essential features from

original data. i.e., we can get less dimension data and better

prediction performance.

PCA-PSO-SVR: Integrating the advantages of SVR to

build prediction model and PCA to extract crucial features,

we can have a combinational algorithm PCA-SVR. Still, it is

not known in advance which C and γ are the best for special

problem, consequently some model determining (parameter

search) must be done. Its goal is to select good C, γ so that the

model can predict unknown data more accurately.

In this study, we use particle swarm optimization to find

good  C, γ pair for its outstanding performance in parameter

optimization area. This algorithm was first proposed by

Eberhart and Kennedy and was designed to simulate social

behaviour such as the foraging movement of a bird flock or

fish school11. It optimizes a problem by having a population

of candidate solutions called particles, then moving these

particles around in the search area according to the preset

simple formulae over the particle's position and velocity. For

PSO details, refer to related documents11-13.

Fig. 1 illustrates the process of building PSO based PCA-

SVR prediction model. The original process data X is first

transformed to X' through PCA. The SVR prediction model is

then constructed using X' and the output variable, MI or density

in this paper. PSO is employed to estimate the important model

parameters C and γ.
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Fig. 1. Flowchart of building PCA-PSO-SVR models

Model variables and calculation: Fig. 2 presents the

polymerization of ethylene in a fluidized-bed reactor with a

heterogeneous Ziegler-Natta catalyst14. Ethylene, butene,

hydrogen and catalyst are fed continuously into the reactor. The

gas phase transports heat out of the reactor through a recycling

system through which the recycle stream is pumped back into

the bottom of the reactor together with the fresh feeds. Fluidized

polymer product is removed from the base of the reactor

through a discharge valve and excessive pressure and impurities

are removed at the top of the reactor through a bleed.

Cooler

Blower

Recycle stream Bleed

Catalyst feeder

Product

Reactor

Fresh Feeds

ethylene
butene

hydrogen

Fig. 2. Gas phase polyethylene reactor system

In our experiments, 29 process variables as shown in

Table-1 were selected to built the prediction model for MI

and density. Obviously there exist noise in these variables and

correlation among them for these variables should conform to

various inside physical and chemical mechanisms. Further,

these inside mechanisms are complicated so in this paper,

mathematic but analytic approach is considered.

We have 456 samples collected from industrial field with

the frequency one sample per minute. The whole samples were

divided into two parts, 256 for training prediction models and

the other 200 for model evaluating. As shown in Fig. 3, we

tested the same data with three different models: RBFNN,

unique SVR and PSO based PCA-SVR to inspect their

prediction precision separately and some conclusions are listed

in following section. In Fig. 3, variable MI is taken as an

instance and method for density is exactly the same.

Data for 
training model

(256*29)

MODELS:

1,RBFNN
2,SVR

3,PCA-SVR

MI for training 

model (256*1)

Data for 

evaluating 
model

(200*29)

Real MI for 
evaluating 

model (200*1)

Predicted MI 

(200 *1)

MODEL 
PRECISION:

1,RBFNN

2,SVR
3,PCA-SVR

Compare

Fig. 3. Scheme of inspecting three models' prediction precisions for MI

RESULTS AND DISCUSSION

For variable MI, we built three prediction models: RBF

neural network (Yang's method1), SVR with RBF kernel9 and

PSO based PCA-SVR. Results of three models are presented

in subfigure a, b and c of Fig. 4.

As can be seen from Fig. 4, the prediction precision

becomes better and better from RBF model to PSO based PCA-

SVR. Subfigure a, b and c of Fig. 5 presents the prediction

accuracy of different models for density. As for the prediction

performance, we can draw the same conclusion with that of

MI.

TABLE-1 

29 VARIABLES FOR BUILDING PREDICTION MODEL 

No. No description (Unit) No. No description (Unit) 

1 Inlet temperature (ºC) 16 Input rate of aluminum triethyl (kg/h) 

2 Reactor temperature (ºC) 17 Flow rate of product (t/h) 

3 Outlet temperature (ºC) 18 Molar ratio of hydrogen to ethylene 

4 Ethylene temperature (ºC) 19 Molar ratio of butene to ethylene 

5 Butene temperature (ºC) 20 Rotation rate of catalyst feeder A (r/min) 

6 Reactor pressure (kPa) 21 Rotation rate of catalyst feeder B (r/min) 

7 Ethylene pressure (kPa) 22 Weight of bed (t) 

8 Pressure drop of tank A (kPa) 23 Bed level (%) 

9 Pressure drop of tank B (kPa) 24 Density of upper product (kg/m3) 

10 Pressure drop of distribution plate (kPa) 25 Density of bottom product (kg/m3) 

11 Flow rate of recycle gas (t/h) 26 Concentration of ethylene in recycle gas (mol %) 

12 Flow rate of ethylene (t/h) 27 Concentration of butene in recycle gas (mol %) 

13 Flow rate of butene (kg/h) 28 Concentration of hydrogen in recycle gas (mol %) 

14 Flow rate of hydrogen (kg/h) 29 Concentration of nitrogen in recycle gas (mol %) 

15 Flow rate of helium (kg/h) – – 
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(c) PCA-SVR, PC = 27
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Fig. 4. MI prediction results of three models

The differences between predicted values and observed

values are measured with root mean square error (RMSE)

which is defined as15:
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Fig. 5. Density prediction results of three models

where N is the number of samples. y and ŷ  are predicted

values and real values respectively. The RMSE results are

listed in Table-2 together with some model parameters such

as: C, γ.

PC number in Table-2 is the number of principal compo-

nents which should be determined deliberately to acquire

optimal preprocess effectiveness. Ideally, the number should be
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TABLE-2 

RMSE VALUES OF DIFFERENT MODELS 

Model RMSE of MI 
RMSE of density 

(× 10-4) 

RBFNN 0.2195 1.1527 

SVR (Best C/best γ) 0.1446 (2.8249/0.1) 0.4369 (1.3659/0.1) 

PCA-SVR (PC 

Number/best C/best γ) 

0.1364 
(27/1.15/0.1) 

0.3710 
(12/2.5471/0.1) 

 
selected to provide maximum feature representation of original

data. In experiments, we chose the optimal one through cross

validation. Fig. 6 demonstrates that if 12 principal compo-

nents are selected for measuring density, the best representation

of original data and thus the optimal prediction precision can

be achieved.
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Fig. 6. Number of PCs has effect on density's prediction accuracy

It should be clarified that PSO, as an intelligent algorithm,

is applied here to seek for ideal parameters. There are also

other approaches to achieve this target among which the grid

search method is a typical but expensive one. It just searches

in the parameters space exhaustively with proper step size.

Compared with this method, PSO is more explainable and in

our experiments, better results can be obtained as listed in

Table-3. The advantage of PSO in such applications is testified.

TABLE-3 

SEARCH METHODS FOR MEASURING 
DENSITY: PSO AND GRID SEARCH 

Model Best C Best γ 
RMSE of 

density (× 10-4) 

PCA-SVR (Grid search) 0.7579 0.3789 0.4395 

PCA-SVR (PSO based) 2.5471 0.1000 0.3710 

 

Conclusion

A PCA-PSO-SVR algorithm for soft-sensing is proposed,

in which SVR is proved to be more competent in predicting

PE's product indices than traditional neural network method.

In previous works1, we have found that increasing noise

would make PCA more contributive. Also, in this study, the

prediction precision can be improved by 15.1 % for density

and 5.57 % for MI (Table-2) with the assistance of PCA. But

it should be noticed that the improvements of MI and density

are not equivalent or similar, especially, the optimal PC number

for measuring density is 12 while 27 is proper for MI. This

demonstrates two facts: there exist correlations among process

variables; the correlation between input variables and output

variable could be unintentionally ignored while using PCA

method i.e., even if there is strong linear relationship between

MI and 29 process variables, PCA method is not able to

decorrelate this correlation. This phenomenon may open the

door to introducing other strategies such as partial least squares

(PLS) to extract features of both input and output variables.

This may be the next research subject of interest.

In this kind of applications, PSO is utilized rightly for

conventional grid search method is time expensive and PSO

has acquired better results in experiments. In conclusion, the

proposed PCA-PSO-SVR algorithm is suitable for soft-sensing

in ethylene polymerization and similar processes.
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