

Synthesis of N-Arylisatins Using Different Heterogeneous Catalyst Under Microwave Irradiations

RAVINDER SINGH^{*} and RAMESH KUMAR

Department of Chemistry, Pt. N.R.S. Government College, Rohtak-124 001, India

*Corresponding author: E-mail: gahlawat.ravinder@gmail.com

(Received: 4 June 2012;

Accepted: 11 March 2013)

AJC-13107

N-Arylisatins having both biological and medical properties are synthesized by the reaction of methyl-2-oxo-2-(arylamino)acetates and arynes using NaHCO₃ in presence of different heterogeneous catalyst under microwave irradiations in high yield in shorter reaction time.

Key Words: Synthesis, N-Arylisatin, Microwave irradiation.

INTRODUCTION

Isatins have both biological and medical properties including antifungal, antiviral, anti HIV, anti AIDS, antiprotozoal, anticancer and antileukema¹⁻⁷. In recent years, isatins have been synthesized by different methods but they require tedious work up and long reaction time⁸⁻¹⁷. Microwave assisted organic synthesis is currently gaining ground in synthetic organic chemistry largely due to the dramatic reduction in time (from days or hours to minutes or seconds)^{18,19}.

Here, we report a microwave assisted synthesis of Narylisatin by reaction of arynes with methyl-2-oxo-2-(arylamino)acetate in excellent yield in shorter reaction time (**Scheme-I**).

We started our work by reacting methyl-2-oxo(phenylamino)acetate with 2-(trimethylsilyl) phenyltrifluoromethanesulphonate in presence of NaX zeolite catalyst under microwave irradiation at 560 W for 4 to 10 min. The corresponding N-phenylisatin is obtained in 65-94 % yield.

Mechanistically, it is believed that in first step, the nucleophilic attack by nitrogen on the benzyne occurs, resulting in the formation of an aryl carbanion. The aryl carbanion attacks the distant ester carbonyl and displaces a methoxy group which eventually lead to the desired isatin (**Scheme-II**).

We further explored our work by reacting different methyl-2-oxo(arylamino)acetate with 2-(trimethylsilyl)phenyltrifluoromethanesulphonate using NaX, NaY and NaZ zeolite catalyst under microwave ireradiation at 560 W power. The results are shown in Table-1. Here electron-rich substituent seems to promote this reaction to a small extent, whereas electron deficient group lower the yield of the reaction in same way as in ordinary conditions.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz, respectively. Thin layer chromatography was performed using commercially prepared 60-mesh silica gel plates and visualization was effected with short wavelength UV light (254 nm).

Typical procedure for synthesis of the isatin derivatives (1-17): To a dry s dram vial containing a solution of the amide (0.5 mmol) and the aryl amino precursor (1.0 mmol) in MeCN (5.0 mL, anhydrous) was added NaHCO₃ (1.0 mmol) and CsF (3.0 mmol). The vial was sealed and allowed to stir for 24 h. The reaction mixture was then filtered through a lug of silica gel using ethyl acetate, concentrated *in vacuo* and purified by

Scheme-II: Possible mechanism for Scheme-I

flash chromatography using gradient solvent combinations of ethyl acetate/hexanes or dichloromethane/hexanes.

1-Phenylindoline-2,3-dione (1): The product was isolated as an orange solid. ¹H NMR (300 MHz,CDCl₃) δ 7.70 (ddd, J = 0.6, 1.3, 7.5Hz,1H), 7.60-7.41 (m, 6H), 7.18 (td,J = 0.8, 7.6 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), ¹³C NMR (75 MHz, CDCl₃) & 183.1, 157.5, 151.9, 138.5, 133.4, 130.2, 129.0, 126.2, 125.8, 124.5, 117.5; HRMS (EI) calcd. (%) for [M + H]⁺ (M=C₁₄H₉NO₂) 224.0706, found (%) 224.0707.

1-p-Tolylindoline-2,3-dione (2): The product was isolated as a red-orange solid. $^1\!H$ NMR (400 MHz, CDCl_3) δ 7.80 (d, J = 7.5 Hz,1 H), 7.66 (t, J = 7.3 Hz, 1H), 7.49 (d, J =

REACTION OF VARIOUS METHYL-2-OXO-2(ARYLAMINO)ACETATES WITH 2-(TRIMETHYLALLYL)PHENYL TRIFLUOROMETHANESULFONATE							
S. No.	Substrate (R ₂)	Time (min)	Yield (%)				
			Using NaX catalyst	Using NaY catalyst	Using NaZ catalyst	m.p. (*C)	
1	Н	7	89	91	85	136-139	
2	4-Me	6	85	95	83	137-139	
3	4-Oph	5	86	95	84	145-148	
4	4-F	6	92	97	91	235-237	
5	4-Cl	7	72	81	68	194-197	
6	4-Br	7	75	83	72	178-180	
7	4-I	7	79	87	74	198-201	
8	2-I	7	88	94	85	173-176	
9	4-CN	4	78	86	75	282-284	
10	4-CO ₂ Et	10	80	88	78	127-129	
11	$4-CF_3$	8	65	71	61	177-181	
12	$3-CF_3$	9	68	75	64	124-127	
13	2-t-Bu	8	90	94	84	109-113	
14	2-Ph	8	84	89	81	157-162	
15	$2,5-(OMe)_2$	5	82	91	78	114-117	
16	2,4,6-Me ₃	5	74	82	71	164-168	
17	2,3-(CH) ₄	5	94	98	90	130-133	

TABLE-1
REACTION OF VARIOUS METHYL-2-OXO-2(ARYLAMINO)ACETATES WITH
2-(TRIMETHYLALLYL)PHENYL TRIFLUOROMETHANESULFONATE

8.2 Hz, 2H), 7.42 (d, J = 8.3Hz, 2H), 7.30 (d, J = 7.5 Hz, 1H) 7.00 (d, J = 8.1 Hz, 1H) 2.56 (s, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 183.2, 157.6, 152.0, 139.1, 138.5, 130.7, 130.3, 126.0, 125.6, 124.3, 117.6, 111.4, 21.4; HRMS(EI) calcd. (%) for C₁₈H₁₁NO₂ 237.0790, found (%) 237.0791.

1-(4-Phenoxyphenyl)indoline-2,3-dione (3): The product was isolated as a yellow-orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.4 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.40-7.34 (m, 4H), 7.18-7.11 (m, 4H), 7.07 (d, J = 8.2 Hz, 2H), 6.88 (d, J = 7.97 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃) δ 183.0, 157.9, 157.6, 156.2, 151.8, 138.5, 130.1, 127.7, 127.4, 125.6, 124.4, 124.3, 119.8, 119.5, 117.5, 111.3, HRMS (EI) calcd for C₂₀H₁₃NO₃ 315.0895, found (%) 315.0899.

1-(4-Fluorophenyl)indoline-2,3-dione (4): The product was isolated as a bright orange solid. ¹H NMR (400 MHz,CDCl₃) δ 7.72(d, *J* = 7.5 Hz, 1H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.44-7.40 (m, 2H), 7.29-7.24 (m, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃ extra peaks due to C-F coupling) δ 182.8, 163.7, 161.2, 157.6, 151.7, 138.6, 129.0, 128.9, 128.3, 128.2, 125.9, 124.7, 117.7, 117.4, 117.2, 111.3, HRMS(EI) calcd. (%) for C₁₄H₈FNO₂ 241.0539, found. (%) 241.0539.

1-(4-Chlorophenyl)indoline-2,3-dione (5): The product was isolated as an orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.71(d, J = 7.5 Hz, 1H), 7.59-7.53 (m, 3H), 7.39 (d, J = 8.6 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 6.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 128.6, 157.4, 151.3, 138.6, 134.7, 131.5, 134.4, 137.5, 126.0, 124.7, 117.7, 111.3 HRMS(EI) calcd. (%) for C₁₄H₈NO₂Cl 257.0244, found (%) 257.0248.

1-(4-Bromophenyl)indoline-2,3-dione (6): The product was isolated as a light orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.66 (m, 3H) 7.56 (t, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.20 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.5, 157.2, 151.1, 138.6, 133.3, 132.0, 127.7, 125.9, 124.7, 122.6, 117.6, 111.3, HRMS (EI) calcd. (%) for C₁₄H₈NO₂Br 300.9738, found (%) 300.9742.

1-(4-Iodophenyl)indoline-2,3-dione (7): The product was isolated as an orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 7.51 Hz, 1H), 7.56 (t, *J* = 7.8 Hz, 1H), 7.21-7.17 (m, 3H), 6.90 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.5, 157.2, 151.1, 139.3, 138.6, 132.7, 127.8, 126.0, 124.8, 117.6, 11.3, 94.1; HRMS (EI) calcd. (%) for C₁₄H₈NO₂I 348.9600, found (%) 348.9601.

1-(2-Iodophenyl)indoline-2,3-dione (8): The product was isolated as a ruby red solid. ¹H NMR (400 MHz, CDCl₃) δ 8.01(d, *J* = 7.9 Hz, 1H), 7.70 (d, *J* = 7.4 Hz, 1H), 7.53-7.51 (m, 2H), 7.36 (d, *J* = 7.6 Hz, iH), 7.26-7.15 (m, 2H), 6.49 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz,CDCl₃) δ 182.6, 157.0, 151.3, 140.8, 138.7, 136.2, 131.5, 130.2, 129.7, 125.8, 124.5, 117.2, 111.8, 98.1; HRMS(EI) calcd. (%) for [M + Na]⁺ (M=C₁₄H₈INO₂) 371.9492, found (%) 371.9497.

4-(2,3-Dioxoindolin-1-yl)benzonitrile (9): The product was isolated as a light orange solid. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.3 Hz, 2H), 7.714-7.705 (m, 3H), 7.64 (t, *J* = 7.8Hz, 1H), 7.23 (t, *J* = 7.51 Hz, 1H), 6.99 (d, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 181.9, 157.2, 150.0, 137.9, 137.6, 133.8, 127.0, 124.9, 124.1, 118.4, 117.9, 110.9, 110.5, HRMS(EI) calcd. (%) for [M + H]⁺ (M=C₁₅H₈N₂O₂) 249.0659, found (%) 249.0656.

Ethyl-4-(2,3-dioxoindolin-1-yl)benzoate (10): The product was isolated as a light orange solid. ¹H NMR (400MHz, CDCl₃) δ 8.21 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 7.5 Hz, 1H), 7.59-7.52 (m, 3H), 7.20 (t, J = 7.51 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 4.40 (d, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 182.3, 165.6, 157.1, 150.9, 138.6, 136.9, 131.3, 130.6, 126.0, 125.5, 124.8, 117.7, 111.4, 61.5, 14.5; HRMS(EI) calcd. (%) for C₁₇H₁₃NO₄ 295.0839, found (%) 295.0845.

1-[4-(Trifluoromethyl)phenyl]indolin-2,3-dione (11): The product was isolated as a bright orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 6.9 Hz, 1H), 7.62-7.59 (m, 3H), 7.23 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 8.1Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, extra peaks due to C-F coupling) δ 182.2, 157.2, 150.8, 138.7, 136.2, 131.0, 130.6, 128.9, 127.33, 127.29, 127.26, 127.22, 126.3, 126.1, 125.1, 125.0, 122.4, 117.7, 111.3, HRMS(EI) calcd. (%) for C₁₅H₈F₃NO₂ 291.0507, found (%) 291.0509.

1-[3-(Trifluoromethyl)phenyl]indolin-2,3-dione (12): The product was isolated as a yellow orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.65 (m, 5H), 7.60 (td, *J* = 1.2, 8.0 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, extra peaks due to C-F coupling) δ 182.3, 157.3, 150.9, 138.7, 133.7, 130.9, 129.6, 126.1, 125.74, 125.70, 125.0, 123.04, 123.00, 117.7, 111.2; HRMS(EI) calcd. (%) for C₁₅H₈F₃NO₂ 291.0507, found (%) 291.0507.

1-(2-*tert***-Butylphenyl)indolin-2,3-dione (13):** The product was isolated as a light orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (t, *J* = 7.9 Hz, 2H), 7.51 (td, *J* = 1.1, 7.8 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.34 (td, *J* = 1.3,7.5 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.05 (dd, *J* = 1.4, 7.8 Hz, 1H), 6.42 (d, *J* = 8.0 Hz, 1H), 1.32(s, 9H); ¹³C NMR (100 MHz, CDCl₃, δ 183.4, 159.2, 154.1, 149.6, 138.7, 131.7, 130.5, 130.2, 129.4, 128.4, 125.4, 124.2, 11.8, 112.7, 35.8, 31.9; HRMS(EI) calcd. (%) for C₁₈H₁₇NO₂ 279.1259, found (%) 279.1259.

1-((1,1/-Biphenyl)-2-Yl]indoline-2,3-dione (14): The product was isolated as a red solid. ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.53 (m, 4H), 7.40-7.36 (m, 2H), 7.26-7.23 (m, 5H), 7.03 (t, *J* = 7.3 Hz, 1H), 6.48 (d, *J* = 7.5 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃) δ 182.8, 158.0, 152.2, 141.1, 138.3, 138.2, 131.7, 130.6, 130.1, 129.3, 128.74, 128.69, 128.2, 128.1, 125.4, 124.1, 117.2, 111.6, HRMS(EI) calcd. (%) for C₃₀H₁₁NO₂ 299.0946, found (%) 299.0946.

1-(2,4-Dimethoxyphenyl)indoline-2,3-dione (15): The product was isolated as a orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, *J* = 7, 7.5 Hz, 1H), 7.49 (t, *J* = 1.4, 7.9 Hz, 1H), 7.11 (td, *J* = 0.73, 7.5 Hz, iH), 7.02-6.96 (m, 2H), 6.86 (d, *J* = 2.6Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 3.77 (s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 157.7, 154.0, 152.2, 149.3, 138.4, 125.3, 124.0, 121.6, 117.6, 116.0, 114.7, 113.7, 111.8, 56.4, 56.0; HRMS(EI) calcd. (%) for C₁₆H₁₃NO₄ 283.0845, found (%) 283.0839.

1-Mesitylindoline-2,3-dione (16): The product was isolated as a yellow orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, iH), 7.03 (s, 2H), 6.4 (d, *J* = 7.8 Hz, 1H), 2.35 (s, 3H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 13.2, 157.5, 151.7, 139.8, 138.8, 136.3, 129.9, 128.0, 125.8, 124.3, 117.7, 111.2, 21.3, 18.1; HRMS(EI) calcd. (%) for C₁₇H₁₅NO₂ 265.1100 found (%) 265.1103.

1-(Naphthalen-1-yl)indoline-2,3-dione (17): The product was isolated as an orange solid. ¹H NMR(400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.2 Hz, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.75 (d, *J* = 7.3 Hz, iH), 7.70 (t, *J* = 8.4 Hz, 1H), 7.64-7.49 (3, 4H), 7.45 (td, *J* = 1.1, 7.9 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 6.44 (d, *J* = 8.0 Hz, 1H), 6H); ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 158.2, 152.8, 138.8, 135.0, 130.4, 129.5, 129.0, 127.6, 127.1, 126.0, 125.7, 124.4, 122.6, 117.6, 112.0; HRMS(EI) calcd. (%) for C₁₈H₁₁NO₂ 273.0790 found (%) 273.0786.

REFERENCES

- (a) S.N. Pandeya, S. Samitha, M. Jyoti and S.K. Sridhar, *Acta Pharm.*, 55, 27 (2005); (b) K.L. Vine, L. Matesh, J.M. Locke, M. Ranson, D. Kropeta, *Med Chem.*, 9, 397 (2009); (c) S.J. Shultleworth, D. Nasturica, C. Gervais, M.A. Siddiqui, R.F. Rando and N. Lee, *Bioorg. Med. Chem. Lett.*, 10, 250 (2000).
- M.R. Islam, M.J. Abedin, M.M. Hossain and H.J. Doddeck, *Bangladesh Chem. Soc.*, 11, 71 (1998).
- K.J. Kilpin, W. Henderson and B.K. Nicholson, *Polyhedron*, 26, 2004 (2007).
- 4. M.R. Islam, J. Abedin and K. Khayer, Indian J. Chem., 40B, 240 (2001).
- 5. R.S. Varma and I.A. Khan, Polish J. Pharmacol. Pharm., 29, 549 (1977).
- C. Li, Y. Go, Z. Mao, K. Koyano, Y. Kai, N. Kanesha, Q. Zhu, Z. Zho and S. Wu, *Bull. Chem. Soc. (Japan)*, 69, 1621 (1996).
- 7. T.A. Mcnell, Antimicrob. Agents Chemother., 4, 105 (1973).

- (a) R. Romagnoli, P.G. Baraldi, C. Cruz-Lopez, D. Preti, J. Bermejo and F. Estavez, *Chem. Med. Chem.*, 4, 1668 (2009); (b) M.G. Bursavich, A.M. Gilbert, S. Lombardi, K.E. Georgiadis, E. Reifenberg, C.R. Flannery and E.A. Morris, *Bioorg. Med. Chem. Lett.*, 17, 5630 (2007); (c) M.J. Konkel, M. Packiarajan, H. Chem, U.P. Topiwala, H. Jimenez, I.J. Talisman, H. Coate and M.W. Walker, *Bioorg. Med. Chem. Lett.*, 16, 3950 (2006); (d) P.Y.S. Lam, G. Vinoent, C.G. Clark, S. Dcudon and P.K. Jadhav, *Tetrahedron Lett.*, 42, 3415 (2001).
- (a) A.V. Shindikar, F. Khan and C.L. Viswanathan, *Eur. J. Med. Chem.*, 41, 786 (2006); (b) P. Moser, A. Sallmann and I.J. Wieserberg, *Med. Chem.*, 33, 2358 (1990); (c) R. Sarges, H.R. Howard, H.K. Koe and A. Weissman, *J. Med. Chem.*, 32, 437 (1989).
- 10. N. Peet, J. Heterocycl. Chem., 17, 1514 (1990).
- (a) Y. Chem and R.C. Larock, in ed.: J. Ackerman, In Modern Arylation Methods, Wiley/VCH New York (2009); (b) R. Sanz, Org. Prep. Proced. Int., 40, 215 (2008).
- (a) Z. Lin and R.C. Larock, J. Org. Chem., **71**, 3198 (2006); (b) Z. Lin and R.C. Larock, Org. Lett., **5**, 4673 (2003); (c) Z. Lin and R.C. Larock, Org. Lett., **6**, 99 (2004).
- 13. Z. Liu and R.C. Larock, J. Am. Chem. Soc., 127, 13112 (2005).
- 14. D.G. Pintori and M.F. Greaney, Org. Lett., 12, 168 (2010).
- H. Yoshida, E. Shirakawa, Y. Honda and T. Hiyama, *Angew. Chem. Int. Ed.*, **41**, 3246 (2002).
- 16. J. Zhao and R.C. Larock, J. Org. Chem., 72, 583 (2007).
- 17. D.C. Rogness and R.C. Larock, Tetrahedron Lett., 50, 4003 (2009).
- 18. Z. Lin and R.C. Larock, J. Org. Chem., 71, 3198 (2006).
- 19. S. Peddibhotla, Curr. Bioact. Compd., 5, 20 (2009).