

Biginelli Reaction-Carboxylic Acids as Catalysts

SADIA NOREEN¹, SAIMA PERVEEN², MUHAMMAD NAEEM KHAN^{3,*}, AREESHA NAZEER¹, MISBAHUL AIN KHAN^{1,2}, MUNAWAR ALI MUNAWAR¹, RABIA BABAR¹, FARAH SUHAIL¹, MUHAMMAD AZAD⁴, ALICE M.R. BERNARDINO⁵ and MAURÍCIO S. DOS SANTOS⁶

¹Institute of Chemistry, University of the Punjab, Lahore, Pakistan ²Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan ³Applied Chemistry Resarch Center, PCSIR Laboratories Complex, Lahore, Pakistan ⁴Government Polytechnic Institute for Printing and Graphic Arts, Lahore, Pakistan ⁵Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói-RJ, Brazil ⁶Departamento de Física e Química, Universidade Federal de Itajubá, Itajubá-MG, Brazil

*Corresponding author: E-mail: changwani_1@yahoo.com

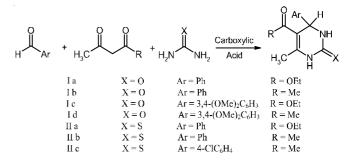
(Received: 23 May 2012;

Accepted: 4 March 2013)

AJC-13067

Mono and dicarboxylic acids were found to be excellent catalysts for the synthesis of dihydropyrimidones/thiones. These are presented as alternate and cheap catalysts for the multicomponent reactions.

Key Words: Multicomponent reactions, Dihydropyrimidone, Dihydropyrimidothione, Acid catalysts.


INTRODUCTION

Pyrimidines are of vital importance in the life processes and the system has received the attention as it deserves both from the biological as well as from chemical field. It is evidenced form the literature regarding the diazines¹. One of the pyrimidine derivatives *i.e.*, 3,4-dihydropyrimidin-2-(1*H*)-ones/thiones* (DHPM), also known as the Biginelli compounds², are of particular biological importance due to their effectiveness as calcium channel blockers and other properties³⁻⁵.

These three component reactions, involving aldehydes, methylenic component (CH) and urea/thiourea in the presence of a catalyst/solvent have been extensively reviewed⁶. A number of effective catalysts have been reported for this reaction. Among these to cite a few are metal salts such as $BiCl_3^7$, $NiCl_2^8$, ZrCl₄⁹, Sr(NO₃)₂¹⁰, Ln(OTf)₃¹¹, solid support¹², microwave assisted¹³, 1,3-dibromo-5,5-dimethylhydantoin¹⁴, iodine¹⁵, CuCl₂·2H₂O in aqueous surfactant system¹⁶, DDQ¹⁷, SnCl₂¹⁸, triphenylphosphine¹⁹, ammonium carbonate²⁰ and ionic liquids²¹. Several Brönsted and Lewis acids have been used in these reactions and in fact acetic acid was the original catalyst used by Biginelli²². Hydrochloric acid has often been employed²³. Another organic acid catalyst, besides acetic acid reported is chloroacetic acid²⁴. A recent paper has described this reaction carried out in low-melting tartaric acid-urea mixtures as a green method²⁵.

To our best of knowledge other organic acids, although a large source of reagents/catalysts have not been explored for

promoting Biginelli reaction. Here we would like to report our findings for the use of organic acids (both mono and dicarboxylic acids) as catalysts in the Biginelli reaction. The raw materials employed were aromatic aldehydes, β -dicarbonyl compounds and urea or thiourea (**Scheme-I**). The list is by no means exhaustive so are the conditions. Yields are good to excellent. Better yields in many reactions can be obtained by varying time and other factors. Other substrates, solvents may also be gainfully employed.

Scheme-I: Synthesis of dihydropyrimidin-2-(1*H*)-one/thiones Ia-d and IIa-c

Although acetic acid has previously been used as combined catalyst and the solvent in the Biginelli condensation²⁶, it was, however, interesting to see if this or other acids, in solvents such as ethanol can also function as catalysts.

S. No.	Acid catalyst —	Yield (%)/m.p. (°C) ^{a,b}			
		Ia	Ib	IIa	IIb
1	Formic acid	75 (203)	75 (220-222)	60 (205)	25 (220-225)
2	Acetic acid	60 (203)	- (220-222)	20 (205)	25 (220-225)
3	Propanoic acid	55 (203)	25 (220-222)	15 (205)	25 (220-225)
4	Butyric acid	75 (203)	55 (220-222)	71 (205)	69 (220-225)
5	Hexanoic acid	80 (188)	-	-	-
6	Palmitic acid	66 (187)	-	-	_
7	Oleic acid	68 (190)	-	-	-
8	Stearic acid	55 (203)	70 (220-222)	20 (205)	20 (220-225)

EXPERIMENTAL

All the chemicals and reagents used in the present study were commercial products. These were purified by usual methods of distillation (for liquids) and crystallization from appropriate solvents (for solids). Melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. IR spectra were recorded on Perkin-Elmer spectrum BX 1 and NMR on a Brucker 400 MHz spectrometer using tetramethylsilane as an internal reference.

General procedure: A mixture of 40 mmol of benzaldehyde, 40 mmol β -diketo compound, 45 mmol urea or thiourea and catalytic amount (a few drops of the liquid acid or a few crystals (ranging from 5-100 mg of the mono- or dicarboxylic acid as mentioned) in 10 mL of ethanol was heated under reflux for a few hours. The reaction was monitored by TLC. After cooling the reaction mixture was diluted with 100 mL of water, kept for a few hours, the precipitates were filtered off, washed with water and dried. A portion was recrystallized from ethanol to give the expected dihydropyrimidone (or thione). Some reactions were carried out by fusion on a hot plate (solvent less condition) and the contents were dissolved in ethanol and purified as usual. All the products of the reactions were compared with the authentic samples prepared by the literature methods and were found to be identical in all respects m.p., mixed m.p., FTIR or other spectra. Compound Ia: ¹H NMR $(400 \text{ MHz}, \text{DMSO}): \delta = 1.06 (t, J = 7.2 \text{ Hz}, 3\text{H}), 2.23 (s, 3\text{H}),$ 3.98 (q, J = 7.2 Hz, 2H), 5.12 (s, 1H), 7.21-7.32 (m, 5H), 7.60 (s, 1H), 9.14 (s, 1H). IR (KBr, v_{max}, cm⁻¹): 3239, 3110, 1725, 1702, 1646. MS (EI): m/z calcd. (%) for C₁₄H₁₆N₂O₃: 260, 2884; found (%): 260,2879.

RESULTS AND DISCUSSION

A 10 mol % of the acid functioned well as a catalyst to give the desired **Ia** and then even a tenfold decrease *i.e.*, 1 mol % was effective (Tables 1 and 2). However, the yields, in some cases, where low, can be increased by using longer reaction periods. This successful attempt encouraged us to explore the use of other aliphatic carboxylic acids as catalysts in these reactions. Formic acid has previously been employed for the dihydropyrimidine synthesis but under microwave irradiation conditions⁹ but with the present protocol comparable yield (75 %) of **Ia** was isolated. Reactions with other acids also gave reasonable yields of the products. Even the long chain fatty acids including the unsaturated oleic acid proved to be efficient catalysts. Table-1 lists the results of these reactions.

When different dioic acids were used in these reactions as catalysts (50 and 10 mg amounts), comparable yields of the products were obtained (Table-2). These results demonstrate the efficacy of dioic acids as catalysts of Biginelli reaction. With the decrease in amount of the catalyst the product yield in some cases were, however, lower as shown in Table-2.

TABLE-2 SYNTHESIS OF DIHYDROPYRMIDIN- 2-(1 <i>H</i>)-ONES USING DICARBOXYLIC ACIDS						
S. No.	Acid catalyst	Yield (%) ^a Ia	Yield (%) ^b Ia			
1	Oxalic acid	63	54			
2	Malonic acid	76	43			
3	Maleic acid	66	66			
4	Adipic acid	68	48			
5	Succinic acid	63	70			
6	Fumaric acid	65	62			
^a 50 mg dioic acid. ^b 10 mg dioic acid.						

Some of the reactions were also carried out by direct fusing the components in the presence of slight amount of different dioic acids (5 mg) and the results obtained are presented in Table-3. The product yields are found to be little lower in all these cases in general. Probably some of the components escaped or decomposed during this "direct" fusion.

TABLE-3 SYNTHESIS OF DIHYDROPYRMIDIN-2-(1 <i>H</i>)- ONES/THIONES USING DIOIC ACIDS						
S. No.	Acid catalyst ^a	Yield (%) Ia	Yield (%) IIa			
1	Oxalic acid	59	32			
2	Malonic acid	47	24			
3	Maleic acid	67	40			
4	Adipic acid	44	50			
5	Succinic acid	62	27			
<u> </u>	Fumaric acid	54	36			

^a5 mg dioic acid, without solvent.

Conclusion

The present method provides yet another series of catalysts for the Biginelli reaction. The procedure is not only simple but also a cheaper alternative for this three component reaction.

ACKNOWLEDGEMENTS

The authors thank Higher Education Commission (HEC) of Pakistan for a scholarship to S. Noreen, S. Perveen and A.

Nazeer. Thanks are also due to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their continuous support.

REFERENCES

- D.J. Brown, In eds.: A.R. Katritzky and C. W Rees, In Comprehensive Heterocyclic Chemistry; Pergamon Press: Oxford (1984).
- 2. P. Biginelli, Gazz. Chim. Ital., 23, 360 (1893).
- G.C. Rovnyak, S.D. Kimball, B. Beyer, G. Cucinotta, J.D. Dimarco, J. Gougoutas, A. Hedberg, M. Malley, J.P. McCarthy, R. Zhang and S. Moreland, *J. Med. Chem.*, 38, 119 (1995).
- G.C. Rovnyak, K.S. Atwal, A. Hedberg, S.D. Kimball, S. Moreland, J.Z. Gougoutas, B.C. O' Reilly, J. Schwarz and M.F. Malley, *J. Med. Chem.*, 35, 3254 (1992).
- S.D. Sidler, R.D. Larsen, M. Chartrain, N. Ikemoto, C.M. Roberge, C.S. Taylor, W. Li and G.F. Bills, PCT. Int. Appl. WO# 9906795 (1999).
- 6. C.O. Kappe and A. Stadler, Org. React. A, 65, 1 (2004).
- 7. K. Ramalinga, P. Vijayalakshmi and T.N.B. Kaimal, Synlett, 863 (2001).
- 8. J. Lu and Y. Bai, *Synthesis*, 466 (2002).
- C.V. Reddy, M. Mahesh, P.V.K. Raju, T.R. Babu and V.V.N. Reddy, *Tetrahedron Lett.*, 43, 2657 (2002).
- 10. C. Liu, J. Wang and Y. Li, J. Mol. Catal. A, 258, 367 (2006).

- 11. L. Wang, C. Qian, H. Tian and Y. Ma, Synth. Commun., 33, 1459 (2003).
- P. Salehi, M. Dabiri, M.A. Zolfigol and M.A.B. Fardi, *Tetrahedron Lett.*, 44, 2889 (2003).
- 13. M. Kidwai, S. Saxena, R. Mohan and R. Venkataramanan, J. Chem. Soc.
- *Perkin Trans. 1*, 1845 (2002).14. M. Abdollahi and Z. Zaghaghi, *Chem. Papers*, **63**, 97 (2009).
- I. Saxena, D.C. Borah and J.C. Sarma, *Tetrahedron Lett.*, **46**, 1159 (2005).
- 16. X. Feng, J.-J. Wang and Y.-P. Tian, *Synth. Commun.*, **38**, 1299 (2008).
- D. Shobha, M.A. Chari, P. Sadanandam and K. Mukkanti, J. Heterocycl. Chem., 45, 1225 (2008).
- D. Russowsky, F.A. Lopes, V.S.S. da Silva, K.F.S. Canto, M.G.M. D Oca and M.N. Godoi, *J. Braz. Chem. Soc.*, **15**, 165 (2004).
- A. Debache, M. Amimour, A. Belfaitah, S. Rhouati and B. Carboni, *Tetrahedron Lett.*, 49, 6119 (2008).
- F. Tamaddon, Z. Razmi and A.A. Jafar, *Tetrahedron Lett.*, **51**, 1187 (2010).
- 21. J. Peng and Y. Deng, Tetrahedron Lett., 42, 5917 (2001).
- 22. E.H. Hu, D.R. Sidler and U.H. Dolling, J. Org. Chem., 63, 3454 (1998).
- 23. J. Lu and H. Ma, Synlett, 63 (2000).
- 24. Y. Yu, D. Liu, C. Liu and G. Luo, *Bioorg. Med. Chem. Lett.*, **17**, 3508 (2007).
- 25. S. Gore, S. Baskaran and B. Koenig, Green Chem., 13, 1009 (2011).
- J. Wichmann, G. Adam, S. Kolczewski, V. Mutel and T. Woltering, Bioorg. Med. Chem. Lett., 9, 1573 (1999).