
INTRODUCTION

An elastomer is a polymer with a notably low Young's

modulus and high yield strain compared to other materials1.

The term, elastomer, is derived from an elastic polymer and is

often used interchangeably with the term rubber. Each of the

monomers that link to form a polymer is normally comprised

of carbon, hydrogen, oxygen and/or silicon. Elastomers are

amorphous polymers existing above their glass transition

temperature, so considerable segmental motion is possible.

Elastomeric materials exhibit viscoelasticity and are used

widely in components, such as tyres and vibration isolators.

Elastomeric bushing, which is one type of structural components,

isolates vibrations, reduces noise transmission, accommodates

oscillatory motions and accepts the misalignment of axes2.

The shape of an elastomeric bushing can be regarded as a

hollow cylinder that is bonded to a solid shaft at its inner surface

and a hollow cylindrical sleeve at its outer surface. Fig. 1 shows

the configurations of elastomeric bushing. The sleeve is connected

to the components of the suspension system and is used to

transfer loads and moments from the wheel to the chassis.

The elastomeric bushing reduces the shock and vibration in

this connection. Dynamics simulations of the automotive suspen-

sion system involve interactions between many components.
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An accurate determination of the loads and moments transmitted

between components, motion of the components, stresses in

the components and energy dissipation is affected by the quality

of the elastomeric bushing model3.

Fig. 1. Configurations of the elastomeric bushing

The classical linear theory of viscoelasticity was first

formulated by Boltzman4. His work covered the three-dimensional

case for isotropic materials. Gurtin and Sternberg5 suggested

a mathematical representation of the constitutive equation for

linear viscoelastic materials and developed equations for

boundary and stress analysis problems. The developments of

computational ability allow researchers to carry out numerical

†Presented to the International Rubber Conference (IRC-2012), May 21-24, 2012, Jeju, Republic of Korea

Asian Journal of Chemistry;   Vol. 25, No. 9 (2013), 5129-5132

http://dx.doi.org/10.14233/ajchem.2013.F3



simulations6-8. Green and Rivlin introduced and developed a

multiple integral representation for nonlinear viscoelasticity

to describe the real behaviour of commonly used materials

more accurately9. Coleman and Noll developed a general three-

dimensional constitutive equation for an isotropic viscoelastic

solid with fading memory10. Pipkin-Rogers11 introduced a

constitutive equation for nonlinear viscoelastic response of

polymers. Using a modified superposition concept, they

constructed a single integral model based on single step

relaxation data. They outlined a procedure for improving the

accuracy of the model by including multi-step relaxation data

and also extended this model to a full three-dimensional

setting. The integrand in the three-dimensional Coleman-Noll

model depends on both the current value of the finite strain

tensor and the history of the relative stretch tensor and contains

a large number of terms. In contrast, the integrand in the Pipkin-

Rogers model depends only on the history of a finite strain

tensor. Step rotational tests are unsuitable for determining the

integrand of the Coleman-Noll model, whereas these tests can

be used to determine the integrand of the Pipkin-Rogers model.

The Pipkin-Rogers modeling concept can also be extended

readily to the load-deformation response.

Elastomeric bushing exhibits complicated relationships

among the applied loads, geometry of deformation, time and

other factors. Deformations and rotations about several axes

are related to their corresponding loads and moments. The

elastomeric material causes a nonlinear and time dependent

relationship between the corresponding load and deformation3.

One-dimensional tests on bushings, in radial or axial motion,

were carried out at the Center for Automotive Structural

Durability Simulation in the Department of Mechanical

Engineering and Applied Mechanics at the University of

Michigan12. The experimental data from these one-dimensional

tests in radial mode suggest that the force depends on the

displacement in a nonlinear manner and that the nonlinearity

is manifested under normal operating conditions. The data also

suggests that the elastomeric bushings exhibit the features of

a viscoelastic response. An accurate representation of the

nonlinear viscoelastic response is important for an accurate

dynamics simulation.

In this study, torsional mode was used to obtain the

relationship between the moment and rotational angle through

experimental research. This study examined an elastomeric

bushing model in torsional mode and compared the proposed

moment-rotational angle relationship with the experimental

results. Because the test could not control temperature, the

temperature effects were not considered. Moreover, although

factors, such as aging and frequency of moment, affect the

conditioning of the elastomeric bushing, they were not consi-

dered in this research. In addition, it was assumed that the

microstructure of the elastomeric bushing would be fairly

constant during testing. A future study will include these

parameters.

The next section introduces the proposed viscoelastic

relationship between the moment and rotational angle and

outlines the method for determining the moment relaxation

property. The experimental results are presented and the

relaxation property is determined. Finally we report the

predicted quality and conclusions.

Proposed viscoelastic relation between the moment and

the rotational angle: Pipkin and Rogers11 introduced the

simplest relationship between the moment and rotational angle

for the nonlinear viscoelastic response of polymers. Applying

integration by parts to the simple relation of Pipkin and Rogers

produced the following form.
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where M(t) is the moment at current time t, s is the time, φ is

the rotational angle and R(φ,s)  is the rotational angle depen-

dent moment relaxation function of time s. In particular,

R(φ0, s) is a property of the elastomeric bushing material and

represents the moment at time s for a step rotational angle, φ0.

This is reason that R(φ, s) is called the rotational angle dependent

moment relaxation function at time s. When s increases, R(φ, s)

decreases monotonically and R(0–, s) = 0 for s < 0. Ideally,

R(φ, s) can be determined where the inner rod undergoes a

step rotational angle with respect to the outer sleeve. However,

this ideal process cannot be realized due to the inertia of the

testing apparatus. To solve these experimental problems, the

ramp to constant rotational angle history was considered

instead of the step rotational angle history. Therefore, the

rotational angle control test should be performed with the ramp

to a constant rotational angle history. Accordingly, the

rotational angle dependent moment relaxation functions can

be obtained using the moment extrapolation method3.

EXPERIMENTAL

In this study, a single mode, particularly torsional mode,

was considered in the elastomeric bushing material. The

elastomeric bushing was fixed at its outer radius and the inner

rod was subjected to a rotational angle φ(s). The ramp to constant

rotational angle histories can be expressed as follows:
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The slope changed from positive to zero at T*
j, which is

called the rise time.

In this study, the rise times are given as T*
1 = 1 sec, T*

2 =

2 sec., T*
3 = 4 sec., T*

4 = 8 sec. and the constant rotational

angles are φ1 = 2º, φ2 = 4º, φ3 = 6º, φ8 = 8º, φ5 = 10º. Conse-

quently, there are twenty data sets with the given rise times

(T*
1 = 1 sec, T*

2 = 2 sec., T*
3 = 4 sec., T*

4 = 8 sec) and rotational

angles (φ1 = 2º, φ2 = 4º, φ3 = 6º, φ8 = 8º, φ5 = 10º).

The ideal type of test is a step rotational angle control

test. On the other hand, a true step rotational angle control test

is not possible due to inertia of the testing equipment. There-

fore, a ramp to constant rotational angle was used instead of a

step rotational angle. The test controller was programmed to

increase the rotational angle at a constant rate during the

period from time zero to a rise time T* and hold it at a fixed φi

after the rise time T*. As the rise time T* decreases, the ramp

to the constant rotational angle control test approaches to the

step rotational angle control test. As shown in eqn. (2), 20

ramp to constant rotational angle control tests were carried

out until t = 2 min. For each ramp to constant rotational angle
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control tests, the peak moment occurred when the prescribed

rotational angle changed from increasing to being held constant

and the peak moment was the greatest at the shortest rise time,

T* = 1 sec. The moment was relaxed to equilibrium during

the period in which the rotational angle remained constant.

For reference, Fig. 2 shows the moment outputs of the rota-

tional angle control tests for φi = 4º, 8º, T*
j = 1, 2, 4, 8 sec..

(a) for  = 4º  φi

(b) for  = 8º  φi

Fig. 2. Experimental moment outputs for fi = 4, 8º, T* = 1, 2, 3, 4 sec

Mathematical representations: Using the moment

extrapolation method in the previous section for φ1 = 2º, φ2 = 4º,

φ3 = 6º, φ8 = 8º, φ5 = 10º, T*
1 = 1 sec, T*

2 = 2 sec., T*
3 = 4 sec.,

T*
4 = 8 sec., the extrapolation process was carried out and the

values of the moment relaxation functions for  0 ≤ s ≤ 60 sec.

were obtained. Because the moment is odd in the rotational

angle, φ, the rotational angle dependent moment relaxation

function, R(φ, s), contains only odd powers of the rotational

angle, φ. The time coefficients of φ and φ3 are sufficient for

the representations because the time coefficients over φ5 are

approximately zero. Therefore, R(φ, s) can be expressed as

follows:
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The rotational angle dependent moment relaxation

function provides a data set that can be used to determine the

time coefficients G1(ta) and G3(ta). If φ
(γ) is the value of a step

rotational angle data set for γ = 1,3, R(φ(1), ta) and R(φ(3), ta)

can be expressed as follows:
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where a = 1,2,3,...., 601, t1 = 0 sec., t2 = 0.1 sec., t3 = 0.2 sec.,

t4 = 0.3 sec., ...., t601 = 60 sec.

The coefficients, G1(ta) and G3(ta) were obtained at a set

of times ta for a = 1,2,3,...., 601, t1 = 0 sec., t2 = 0.1 sec., t3 = 0.2

sec., t4 = 0.3 sec., ...., t601 = 60 sec. from a minimization of the

least-squares error.

This discrete data set G1(ta) and G3(ta) can be represented

as a sum of exponential functions, as follows:
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The parameters )3,2,3,2,1,,C( ii =β=ατ βα were obtained

using the nonlinear least-squares method. After applying a 3 %

relative error to the fitting process, the time coefficient function

G1(t) and G3(t) obtained can be rewritten as follows:
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Finally, the complete form of the nonlinear viscoelastic

model for the elastomeric bushing in torsional mode was

obtained as follows:
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RESULTS AND DISCUSSION

Predictive quality of the proposed model: Here we

discuss the predictive capability of the proposed model. The

moment outputs for the ramp to constant rotational angle

histories are considered for the proposed model and experi-

ment. Both the experimental results and the results of the

proposed model were used to determine the moment responses

to the specified rotational histories for 0 ≤ t ≤ 60 sec. For evalu-

ation purposes, the relative error E was defined using the

2-norm concept and is expressed as follows:
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The particular rotational angle histories for the experi-

ment and proposed model can be expressed as follows:
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A comparison of the proposed model outputs with the

experimental results was carried out for rise times, T* = 1, 2,

4, 8 sec. For φ = 10º and T* = 1, 2, 4, 8 sec., the relative errors

between the results of the proposed model and the experimental

results were less than 5 %. Fig. 3 shows the comparisons

between the proposed model outputs and the experimental

results for φ = 10º and T* = 1, 4 sec.  In Fig. 3, the solid line
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denotes the experimental results and the dotted line shows the

results of the proposed model. The proposed model appears

to show possible agreement with the experimental results under

practical operating regions.

(a) T* = 1 sec.for 

 

(b) T* = 4 sec.for 

Fig. 3. Comparisons between the proposed model outputs and experimental

results for φ = 10º and T* = 1, 4 sec

Conclusion

The moment-rotational angle relationship for torsional

mode of an elastomeric bushing was studied experimentally.

The proposed approximate relationship was expressed in terms

of the moment relaxation property determined from the experi-

mental results. The moment relaxation property in the explicit

moment-rotational angle relation was determined using a

method that extrapolates the results obtained experimentally.

Because the comparisons were carried out for only a limited

number of rotational angle histories, the results were only satis-

factory over limited times and deformation ranges. Neverthe-

less, this can be acceptable for use in multi-body dynamics

simulations involving short time intervals.
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