

ASIAN JOURNAL
OF CHEMISTRY

gwet Anniversory have

getter a control of the contro

http://dx.doi.org/10.14233/ajchem.2013.14314

NOTE

Synthesis and Supramolecular Structure of 2-Acetyl-1-naphthol

Qiong Su^{1,*}, Xin-Ying Zhang², Yu-Jie Zhang², Li Zhao², Li Wang² and Yan-Bin Wang^{1,*}

¹School of Chemical Engineering, Northwest University of nationalities, Lanzhou 730030, P.R. China ²School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China

(Received: 16 July 2012;

Accepted: 25 March 2013)

AJC-13154

b = 7.0312(7), c =

2-Acetyl-1-naphthol with the molecular formula $C_{12}H_{10}O_2$, is stabilized by intramolecular O2-H2···O1 hydrogen bond forming a six-membered ring, nearly planar with the naphthone ring and the distances from C1 atom of acetyl group to mean plane of the three six-membered ring is 0.112(3) Å. Moreover, the structure is stabilized by intermolecular C-H··· π and π - π stacking interactions.

Key Words: Naphthol, Synthesis, Supramolecular structure.

Naphthaldehyde, hydroxy-naphthaldehyde and their derivatives are an important class of intermediates¹⁻³ which condenses with primary amines to afford Schiff bases^{4,5} that are one of most versatile mixed-donor ligands in the field of coordination chemistry⁶⁻⁸. In this paper, we report on the synthesis and the X-ray single-crystal structure of the 2-acetyl-1-naphthol.

A sample of 2-methoxy naphthalene was obtained from Alfa Aesar and used without further purification. The other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory. C, H and O analyses were carried out with a GmbH VariuoEL V3.00 automatic elemental analyzer. X-Ray single crystal structure was determined on a Bruker Smart 1000 CCD area detector. Melting points were measured by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company and the thermometer was uncorrected.

Synthesis: A solution of 2-methoxy naphthalene (0.1 mmol), acetyl chloride (0.1 mmol) in 30 mL ethanol in the presence of AlCl₃ was refluxed for 5 h and then cooled to room temperature and filtered. Pale-yellow needle-like single crystals suitable for X-ray diffraction studies were obtained after several weeks by slow evaporation from a methanol-ethyl ether (1:3) mixed solution of the title compound.

X-Ray structure determination: The single crystal of the 2-acetyl-1-naphthol, with approximate dimensions of 0.55 mm \times 0.50 mm \times 0.38 mm was placed on a Bruker Smart 1000 diffractmeter equipped with Apex CCD area detector. The diffraction data were collected using a graphite monochromated

 MoK_{α} radition ($\lambda=0.71073$ Å) at 298(2) K. The structure was solved by using the program SHELXS-97 and Fourier difference techniques and refined by full-matrix least-squares method on F^2 using SHELXL-97. Details of the data collection and refinements of the title compound are given in Table-1. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically. CCDC: 712170.

TABLE-1 CRYSTAL DATA AND STRUCTURE REFINEMENT FOR THE 2-ACETYL-1-NAPHTHOL

$C_{12}H_{10}O_2$
186.20
298(2)
0.71073
Monoclinic
$P 2_1/n$
a = 7.6246(9), 17.4709(16),

Volume (\mathring{A}^3) 17.4709(16), $\beta = 92.432(1)$ 935 77(17)

Volume (ų) 935.77(17) Z. 4

Density (calculated) (mg/m 3) 1.322 Absorption coefficient (mm $^{-1}$) 0.089 $F_{(000)}$ 392.0

 $\begin{array}{ll} \mbox{Index ranges} & -9 \le h \le 8, \ -8 \le k \le 7, \ -20 \le l \le 19 \\ \mbox{Reflections collected} & 4497/1643 \ [R_{(int)} = 0.0454] \\ \end{array}$

Independent reflections 1494
Data/restraints/parameters 1643/0/129
Goodness of fit indicator 1.071

Largest diff. peak and hole (e Å⁻³) 0.152 and -0.154

^{*}Corresponding author: E-mail: ybwang@126.com

5116 Su et al. Asian J. Chem.

TABLE-2							
SELECTED BOND DISTANCES (Å) AND ANGLES (°) FOR THE TITLE COMPOUND							
Bond	Lengths	Bond	Lengths	Bond	Lengths		
O1-C2	1.240(3)	C3-C8	1.429(3)	C7-C12	1.413(3)		
O2-C3	1.341(2)	C4-C5	1.413(3)	C8-C9	1.413(3)		
C1-C2	1.489(3)	C5-C6	1.352(3)	C9-C10	1.367(3)		
C2-C4	1.467(3)	C6-C7	1.412(3)	C10-C11	1.379(3)		
C3-C4	1.385(3)	C7-C8	1.408(3)	C11-C12	1.358(3)		
Bond	Angles	Bond	Angles	Bond	Angles		
O1-C2-C4	119.9(2)	C3-C4-C2	120.0(2)	C7-C8-C9	119.29(19)		
O1-C2-C1	119.4(2)	C5-C4-C2	121.6(2)	C7-C8-C3	118.51(18)		
C4-C2-C1	120.7(2)	C6-C5-C4	121.8(2)	C9-C8-C3	122.19(19)		
O2-C3-C4	122.49(18)	C5-C6-C7	120.67(19)	C10-C9-C8	120.4(2)		
O2-C3-C8	116.45(19)	C8-C7-C6	119.51(18)	C9-C10-C11	120.5(2)		
C4-C3-C8	121.06(17)	C8-C7-C12	117.91(19)	C12-C11-C10	120.5(2)		
C3-C4-C5	118.45(17)	C6-C7-C12	122.58(19)	C11-C12-C7	121.4(2)		

X-Ray crystallographic analysis revealed the crystal structure of the title compound. And the structure is shown in Fig. 1. Selected bond distances and angles are listed in Table-2. The single crystal structure of the title compound is built up by only the $C_{12}H_{10}O_2$ molecule. An intramolecular O2-H2···O1 hydrogen bond between the hydroxyl group and the O atom of carbonyl group forms a six-membered ring in each molecule (Table-3), which is nearly coplanar with the naphthone ring and the distances from C1 atom of acetyl group to mean plane of the three six-membered ring is 0.112(3) Å. There are weak intermolecular π - π stacking interactions between neighbouring aromatic rings (C3-C8) with centroid-to-centroid distances of 3.844(2) Å (Fig. 2). Moreover, the structure is stabilized by intermolecular C-H··· π stacking interactions.

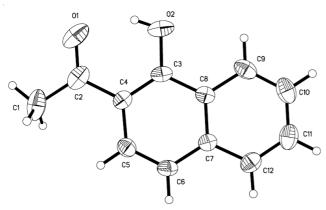


Fig. 1. Molecule structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30 % probability level

TABLE-3							
HYDROGEN BOND [Å, °] FOR THE TITLE COMPOUND							
D-H···A	d(D-H)	d(H···A)	∠DHA	$d(D \cdot \cdot \cdot A)$			
O2-H2···O1	0.82	1.80	146	2.526(3)			

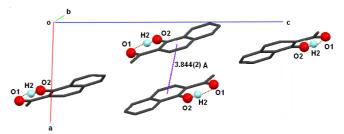


Fig. 2. A perspective view of the intramolecular hydrogen-bond and π - π stacking interactions together with the centroid-centroid contacts

REFERENCES

- S. Wang, P. Day, J.D. Wallis, P.N. Horton and M.B. Hursthouse, *Polyhedron*, 25, 2583 (2006).
- 2. J.W. Herndon, Coord. Chem. Rev., 243, 3 (2003).
- 3. M.R. Rizal and S.W. Ng, Acta Crystallogr., E64, o916 (2008).
- W.K. Dong, X.N. He, L. Li, Z.W. Lv and J.F. Tong, *Acta Crystallogr.*, E64, 01405 (2008).
- T.J. Meng, X.Q. Qin, W.X. Zhao, X.Q. Huang and G.D. Wei, Acta Crystallogr., E64, o1520 (2008).
- J.Y. Shi, W.K. Dong, Y.P. Zhang and S.X. Gao, *Acta Crystallogr.*, E63, 04080 (2007).
- 7. W.K. Dong and J.G. Duan, J. Coord. Chem., 61, 781 (2008).
- 8. W.K. Dong, J.G. Duan, L.Q. Chai, G.L. Liu and H.L. Wu, *J. Coord. Chem.*, **61**, 1306 (2008).