

Synthesis and Dipolymer Structure of Salen-type N₂O₂ Ligand 2,2'-[(Pentane-1,5-diyldioxy-*bis*)-*bis*-(nitrilomethylidyne)]dinaphthalene

LI ZHAO*, YU-JIE ZHANG, SHOU-TING ZHANG, HONG-XIA GUO and QIAN CHENG

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China

*Corresponding author: E-mail: zhaoli_72@163.com

(Received: 21 September 2012;

Accepted: 18 February 2013)

AJC-13042

The compound, 2,2'-[(pentane-1,5-diyldioxy-*bis*)-*bis*-(nitrilomethylidyne)]dinaphthalene has been synthesized by 1,5-*bis*-(aminooxy)pentane and 2-naphthaldehyde in ethanol solution and characterized structurally by X-ray crystallography. The molecule of the title compound, $C_{27}H_{26}N_2O_2$, assumes a dipolymer structure through a weak C-H···C hydrogen-bonding interactions. And the single crystal structure of the compound revealed all-conformation of the (-CH=N-O-(CH₂)₅-O-N=CH-) linkage, which resulted in the structure with two nitrilomethylidyne units apart from each other. The compound is sufficiently stable to resist scrambling of the C=N bonds. This may be ascribed to lower reactivity of the C=N-O bonds toward nucleophiles.

Key Words: Salen-type bisoxime compound, Synthesis, Dipolymer, Structure.

INTRODUCTION

Salen-type bisoxime compounds, consisting of two nitrogen and two oxygen donors, are capable of forming stable metal complexes¹ which contain one, two or more metal centers and form homo- and heteronuclear complexes serving as catalysts², models of reaction centers of metalloenzymes³, models of reaction centers of metalloenzymes⁴, nonlinear optical materials and molecular recognition and biological agents⁵. And bisoxime complexes offer both high reactivity and selectivity include epoxidation of olefins, asymmetric ring-opening of epoxides, olefin aziridination, olefin cyclopropan-ation and formation of cyclic, linear polycarbonates⁶ and building blocks for cyclic supramolecular structures⁷. Thus, new materials can be produced by using these compounds, which seem to be suitable candidates for further chemical modifications⁸.

Recently, a preferable class of Salen-type bisoxime ligands have been reported by using an O-alkyloxime unit (-CH=N-O-(CH)₂-O-N=CH-) instead of the (-CH=N-(CH)2-N=CH-) group and the large electronegativity of oxygen atoms is expected to affect strongly the electronic properties of N_2O_2 coordination sphere, which can lead to different and novel properties and structures of the resulting complexes⁹⁻¹³. Here, we report on the synthesis and dipolymer structure of Salentype N_2O_2 compound, 2,2'-[(pentane-1,5-diyldioxybis)bis-(nitrilomethylidyne)]dinaphthalene.

EXPERIMENTAL

2-Naphthaldehyde, *N*-hydroxyphthalimide, 1,5-dibromopentane, triethylamine, hydrazine hydrate and anhydrous magnesium sulfate were purchased and used without further purification. The other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory. C, H and N analyses were carried out with a GmbH VariuoEL V3.00 automatic elemental analyzer. X-ray single crystal structure was determined on a Bruker Smart 1000 CCD area detector. Melting points were measured by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company and the thermometer was uncorrected.

1,5-*Bis*-(aminooxy)pentane was synthesized according to an analogous method reported earlier¹⁴. Yield: 53.4 %.

2,2'-[(Pentane-1,5-diyldioxy-*bis*)-*bis*-(nitrilomethylidyne)]dinaphthalene was synthesized according to an analogous method reported earlier¹⁵. To an ethanolic solution (8 mL) of 2-naphthaldehyde (203.6 mg, 1.3 mmol) was added an ethanol solution (5 mL) of 1,5-*bis*-(aminooxy)pentane (121.8 mg, 0.6 mmol). The reaction mixture was stirred at 328-333 K for 4 h. The formed precipitate was separated by filtration and washed successively with ethanol and *n*-hexane. The product was dried under vacuum to yield 124.6 mg of the title compound. Yield, 65.2 %. m.p. 388-389 K. Anal. calcd. for $C_{27}H_{26}N_2O_2$ (%): C, 79.00; H, 6.38; N, 6.82. Found (%): C, 79.28; H, 6.25; N, 6.70. After a solution of the title compound (5.0 mg, 0.012 mmol) in ethanol (4 mL) was allowed to stand at room temperature for about 2 weeks, several colourless block-like single crystals suitable for X-ray crystallographic analysis were obtained.

X-Ray structure determination: The single crystal of the title compound, with approximate dimensions of 0.40 × 0.37 × 0.11 mm was placed on a Bruker Smart 1000 diffractmeter equipped with Apex CCD area detector. The diffraction data were collected using a graphite monochromated MoK_α radition ($\lambda = 0.71073$ Å) at 298(2) K. The structure was solved by using the program SHELXS-97 and Fourier difference techniques and refined by full-matrix least-squares method on F² using SHELXL-9716. Details of the data collection and refinements of the title compound are given in Table-1. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically. CCDC: 901641.

RESULTS AND DISCUSSION

X-ray crystallographic analysis revealed the crystal structure of the title compound. The structure is shown in Fig. 1 and packing arrangement of the unit cell of the title compound is given in Fig. 2 and the dipolymer structure of the compound is shown in Fig. 3. Crystal data and structure refinement for the title compound are listed in Table-1. Selected bond distances and angles are listed in Table-2. The single crystal structure of the compound is built up by only the $C_{27}H_{26}N_2O_2$ molecule, in which all bond lengths are in normal ranges. The title compound is a typical Salen-type bisoxime derivative with normal geometric parameters. The X-ray diffraction analysis revealed all-conformation of the (-CH=N-O-(CH₂)₅-O-N=CH-) linkage, which resulted in the structure with two nitrilomethyl

TABLE-1 CRYSTAL DATA AND STRUCTURE REFINEMENT FOR THE TITLE COMPOUND				
Empirical formula	$C_{27}H_{26}N_2O_2$			
Formula weight	410.58			
Temperature, (K)	298(2)			
Wavelength (Å)	0.71073			
Crystal system	Monoclinic			
Space group	C2/c			
Cell dimensions, (Ű)	a = 10.2673(9), b = 10.3060(11), c			
	$= 10.3060(11), \beta = 96.4800$			
Volume, Å ³	4477.8(7)			
Ζ	8			
Density (calculated) (mg/m ³)	1.218			
Absorption coefficient (mm ⁻¹)	0.077			
F(000)	1744			
Index ranges	$-12 \le h \le 12, -12 \le k \le 8, -50 \le 1$			
	≤ 50			
Reflections collected	10790/7230 [R(int) = 0.0645]			
Max. and min. transmission	0.9916 and 0.9699			
Data/restraints/parameters	7230/2/559			
Goodness of fit indicator	1.051			
R [I > $2\sigma(I)$]	$R_1 = 0.1365, wR_2 = 0.2918$			
Largest diff. peak and hole, e2Å-3	0.446 and -0.223			

-idyne units apart from each other. The compound is sufficiently stable to resist scrambling of the C=N bonds. This maybe ascribed to lower reactivity of the C=N-O bonds toward nucleophiles.

In the crystal structure, packing arrangement of the unit cell of the title compound revealed that each molecule links aother neighboring molecule through a weak C-H…C hydrogenbonding interactions into a dipolymer structure (Fig. 3).

TABLE-2 SELECTED BOND DISTANCES (Å) AND ANGLES (°) FOR THE TITLE COMPOLIND						
Bond	Lengths	Bond	Lengths	Bond	Lengths	
N(1)- $C(6)$	1 27(2)	$\Gamma(6)$ - $\Gamma(8)$	1 45(2)	C(17)-C(19)	1 45(2)	
N(1)-C(0) N(1)-O(1)	1.27(2)	C(7) - C(8)	1.45(2)	C(18)-C(19)	1.43(2) 1 42(2)	
N(2)-C(17)	1 306(17)	C(7)- $C(12)$	1.30(2) 1 44(2)	C(18)- $C(23)$	1.42(2) 1.46(2)	
N(2) - O(2)	1.358(15)	C(8)-C(9)	1 39(2)	C(19) - C(20)	1.35(2)	
N(3)-O(3)	1 331(16)	C(9)-C(10)	1.35(2)	C(20)- $C(21)$	1.33(2)	
N(4)-O(4)	1.378(16)	C(10)- $C(11)$	1.344(2)	C(21)- $C(22)$	1.38(2)	
O(1)- $C(1)$	1.40(2)	C(11)- $C(16)$	1.374(2)	C(22)-C(23)	1.42(2)	
O(2)-C(5)	1.444(19)	C(11)- $C(12)$	1.399(2)	C(22)-C(27)	1.45(2)	
C(1)-C(2)	1.50(2)	C(12)- $C(13)$	1.36(2)	C(23)-C(24)	1.37(2)	
C(2)-C(3)	1.47(2)	C(13)-C(14)	1.33(2)	C(24)-C(25)	1.323(2)	
C(3)-C(4)	1.48(2)	C(14)-C(15)	1.41(2)	C(25)-C(26)	1.36(2)	
C(4)-C(5)	1.48(2)	C(15)-C(16)	1.349(2)	C(26)-C(27)	1.46(2)	
Bond	Angles	Bond	Angles	Bond	Angles	
C(6)-N(1)-O(1)	112.5(17)	C(8)-C(7)-C(12)	120.3(17)	C(13)-C(14)-C(15)	115.0(18)	
C(17)-N(2)-O(2)	110.5(14)	C(12)-C(7)-H(7)	119.9	C(16)-C(15)-C(14)	120.7(15)	
C(33)-N(3)-O(3)	113.7(17)	C(7)-C(8)-C(9)	123.4(15)	C(15)-C(16)-C(11)	120.2(16)	
C(44)-N(4)-O(4)	108.9(16)	C(7)-C(8)-C(6)	120(2)	N(2)-C(17)-C(19)	120.1(19)	
N(1)-O(1)-C(1)	117.4(16)	C(9)-C(8)-C(6)	116(2)	C(19)-C(18)-C(23)	116.4(17)	
N(2)-O(2)-C(5)	107.6(14)	C(10)-C(9)-C(8)	115.5(18)	C(20)-C(19)-C(18)	122.9(18)	
N(3)-O(3)-C(28)	118.2(16)	C(11)-C(10)-C(9)	124.2(19)	C(20)-C(19)-C(17)	120(2)	
N(4)-O(4)-C(32)	104.2(15)	C(10)-C(11)-C(16)	116(2)	C(18)-C(19)-C(17)	117(2)	
O(1)-C(1)-C(2)	113.1(18)	C(10)-C(11)-C(12)	122.1(17)	C(21)-C(20)-C(19)	123(2)	
C(3)-C(2)-C(1)	114.2(19)	C(16)-C(11)-C(12)	121.7(16)	C(20)-C(21)-C(22)	117(2)	
C(2)-C(3)-C(4)	115.9(19)	C(13)-C(12)-C(11)	113.5(16)	C(21)-C(22)-C(23)	127.0(19)	
C(5)-C(4)-C(3)	118.3(19)	C(13)-C(12)-C(7)	132(2)	C(21)-C(22)-C(27)	114.4(19)	
O(2)-C(5)-C(4)	110.6(17)	C(11)-C(12)-C(7)	114.5(16)	C(23)-C(22)-C(27)	118.6(16)	
N(1)-C(6)-C(8)	124(2)	C(14)-C(13)-C(12)	129(2)	C(24)-C(23)-C(22)	122.4(19)	

Fig. 1. Molecule structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30 % probability level

Fig. 2. Packing arrangement of the unit cell of the title compound. H atoms are omitted for clarity

Fig. 3. Dipolymer structure of the compound, hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity

REFERENCES

- S. Akine, A. Akimoto, T. Shiga, H. Oshio and T. Nabeshima, *Inorg. Chem.*, 47, 875 (2008).
- W.K. Dong, Y.X. Sun, Y.P. Zhang, L. Li, X.N. He and X.L. Tang, *Inorg. Chim. Acta*, **362**, 117 (2009).
- W.K. Dong, Y.X. Sun, Y.X. Zhao, X.Y Dong and L. Xu, *Polyhedron*, 29, 2087 (2010).
- 4. J.P. Costes, F. Dahan and A. Dupuis, *Inorg. Chem.*, **39**, 165 (2000).
- S.S. Sun, C.L. Stern, S.T. Nguyen and J.T. Hupp, J. Am. Chem. Soc., 126, 6314 (2004).
- 6. S. Yamada, Coord. Chem. Rev., 190, 537 (1999).
- 7. A.K. Sharma, F. Lloret and R. Mukherjee, *Inorg. Chem.*, **46**, 5128 (2007).
- 8. C. Policar, F. Lambert and M. Cesario, *Eur. J. Inorg. Chem.*, **12**, 2201 (1999).
- 9. S. Akine, T. Taniguchi and T. Nabeshima, Chem. Lett., 682 (2001).
- 10. S. Akine, T. Taniguchi and T. Nabeshima, *Inorg. Chem.*, **43**, 6142 (2004).
- 11. S. Akine, W.K. Dong and T. Nabeshima, Inorg. Chem., 45, 4677 (2006).
- 12. W.K. Dong, J.G. Duan and G.L. Liu, *Transition Met. Chem.*, **32**, 702 (2007).
- 13. W.K. Dong, C.E. Zhu, H.L. Wu, Y.J. Ding and T.Z. Yu, *Synth. React. Inorg. Met.-Org. Nano-Met. Chem.*, **37**, 61 (2007).
- W.K. Dong, J.H. Feng, L. Wang and L. Xu, *Transition Met. Chem.*, 32, 1101 (2007).
- W.K. Dong, J. Yao, Y.X. Sun, L. Li and J.C. Wu, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 40, 521 (2010).