

Structural Identification of Chemical Constituents from *Scutellaria* baicalensis by HPLC-ESI-MS/MS and NMR Spectroscopy

WENHUI LIN¹, SHUANG LIU^{2,3} and BIN WU^{3,*}

¹School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
 ²Haerbin University of Commerce, Haerbin 150076, P.R. China
 ³Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Zhangjiang, Pudong 201203, Shanghai, P.R. China

*Corresponding author: Email: wubin1031@hotmail.com; 893898379@qq.com; linwu1217@hotmail.com

(<i>Receivea</i> : 20 March 2012

Accepted: 14 January 2013)

AJC-12697

Scutellariae Radix, the dried roots of *Scutellaria baicalensis* Georgi, which is one of the famous herb widely used in the treatment of pyrexia, jaundice and hypertension. To directly identify the compounds of the extract of the *S. baicalensis* was performed using HPLC-ESI-MS/MS. Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV, ¹H and ¹³C NMR, MS) techniques were applied for separation, isolation, purification and identification of new compounds. A systematic phytochemical investigantion of *S. baicalensis* led to the isolation of 7 new and 40 known chemical constituents. By HPLC-ESI-MS/MS and NMR spectral analyses, the new compounds were identified as 7-hydroxy-3,5,8-trimethoxy-3',4'-methylenedioxy flavone-7-*O*- β -glucopyranoside (1), 7-hydroxy-5,6,8-trimethoxy-3',4'-methylenedioxy flavone-7-*O*- β -glucopyranoside (2), patuletin-7- β -glucuronide (3), pinobankasin-6-C-glucopyranosyl-8-C- α -arabinopyranoside (12) and 5-hydoxy-6,7,4'-trimethoxy-flavanone 5-sulfate (24).

Key Words: Scutellaria baicalensis; Structural elucidation, Chemical constituents, HPLC-MS/MS, NMR.

INTRODUCTION

Huangqin (*Radix scutellariae*) is an important traditional Chinese medicine prepared from the roots of *Scutellaria baicalensis* Georgi (Labiatae family). It is widely used in traditional Chinese medicine to treat inflammation, pyrexia, jaundice, hepatitis and hypertension¹. In the clinic, it is widely applied to cure pneumonia, hypertension, jaundice, dysentery and intestinal catarrh, pyogenic infection, *etc.*,². It acts as a key ingredient in a number of formulae such as Shuanghuanglian oral liquid, Huangqin compound recipes granule, Yinhuang table, *etc.* Flavonoids and their derivatives are the main components of the *S. baicalensis.* Including baicalin, baicalein, oroxylin A, wogonoside, wogonin, apigenin and scutellarein, *etc.*³.

This paper describes 7 new and 38 known chemical constituents, including 2 flavone sulfates representing the first report of natural flavone sulfates from this genus and 5 novel flavone glycosides, from the aerial parts of this plant. The molecular structures of these new compounds were elucidated based on ¹D and ²D NMR spectra and comparisons with literature data.

EXPERIMENTAL

Optical rotations were measured using a Perkin-Elmer 241 MC polarimeter. IR spectra were recorded using a Perkin-Elmer 577 spectrometer. UV spectra were obtained on a Shimadzu UV-2401PC spectrophotometer. HR-TOF-MS was performed using a Waters Q-TOF Ultima. NMR experiments were run on a Varian Mercury-400 spectrometer (USA). Chemical shifts are given on a δ (ppm) scale using TMS as an internal standard. HPLC was performed using Davisil[®] ODS (35-60 µm, 60Å, Grace) on a BUCHI C-615 pump (UV-detector C-635 and C-660 fraction collector, BUCHI, Switzerland). Semi-preparative HPLC was carried out using EasySep TM-1010 instrument equipped with a Daisogel C₁₈ column (12 µm, 20 mm × 250 mm).

HPLC conditions: An Agilent series 1100 HPLC instrument (Waldbronn, Germany) equipped with a quaternary pump, a UV detector and a column compatment was used for analyses. The samples were separated on a Apollo C₁₈ column (5 μ m, 4.6 × 250 mm, Grace), including an Easy Guard Kit C₁₈ (4 × 2 mm, Dikma) guard column. A gradient elution of 0.5 % aqueous formic acid (A) and acetonitrile (B) was used

Fig. 1. A representative HPLC-ESI-MSn analysis of the extract of *S. baicalensis*. (a) HPLC-UV chromatogram at 280 nm (b) LC-negative ion ESI-MS total ion current (TIC) profile

as follows: 20 % B in the first 10 min, 20 %-25 % B at 10-11 min, then B held at 25 % for 14 min, linearly gradient to 35 % B at 26 min and hold for 15 min, 35 % - 55 % B at 41-45 min, linearly gradient to 100 % B at 50 min and hold for 5 min. The column was maintained at 25 °C. Detection wavelengths were set at 280 nm. The flow rate was 0.8 mL/min (Fig. 1).

Mass spectrometric conditions: HPLC-MS experiments were performed with an Agilent 1100 series LC/MSD Trap mass spectrometer was connected to an Agilent 1100 HPLC instrument *via* an ESI source. The LC/MSD Trap software (5.3 version) was applied for system operation and data collection. The mass spectra were recorded in negative mode, drying gas flow rate 10 L/min, drying gas temperature 350 °C, nebulizer 35 psi., capillary voltage 3500 V, mass range 50-1500 m/z.

The roots of Scutellaria baicalensis Georgi were collected from Xi'an, ShanXi province, China and authenticated by Professor Shen Jingui of Shanghai Institute of Materia Medica, Chinese Academy of Sciences. A voucher specimen (SIMM-HCG-HQ0905) was deposited in the Herbarium of Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

Extraction and isolation: The roots of *S. baicalensis* (5 Kg) were extracted twice with 95 % ethanol at room temperature. The EtOH extracts were combined and evaporated under reduced pressure to give a residue (677 g). A protion of

the extract (384 g) was suspended in distilled water and chromatographed using medium-pressure ODS column chromatography (column dimensions 100 mm × 460 mm) eluting followed by increasing concentrations of MeOH in H₂O (10, 20, 30, 50, 80 and 100 % MeOH; fraction volume 1200 mL). Give 48 fractions (355 g), which were combined into seven main groups (A-G). The fraction A (33.8 g) eluted with 10 % MeOH was rechromatographed using semi-preparative HPLC to give compound 1 (5.4 mg) and compound 2 (6.0 mg). Fraction B (26.4 g) eluted with 13 % MeOH was repeatedly chromatographed using semi-preparative HPLC to yield compound 3 (4.5 mg) and compound 4 (5.4 mg). The fraction C (11.4 g) eluted with 15 % MeOH was rechromatographed using semi-preparative HPLC to yield compound 11 (15.7 mg). The fraction D (93.9 g) eluted with 17 % MeOH was rechromatographed using semi-preparative HPLC to give compound 12 (21.1mg). The fraction F (73.9 g) eluted with 22 % MeOH was rechromatographed using semi-preparative HPLC to give compound 24 (6.8 mg).

Experimental data for the new flavonoid glycosides

7-Hydroxy-3,5,8-trimethoxy-3',4'-methylenedioxy flavone-7-O-β-glucopyranoside (1): Pale yellow needles crystals; m.p.: 284-285 °C; UV (MeOH) λ_{max} (log ε): 256 (4.21), 273 (4.23), 350 (4.23); IR (KBr, v_{max} , cm⁻¹): 3100 (OH), 1620 (C=O), 1605, 1590, 1495; ESI-MS [M-H]-*m*/*z*, 533; HR- ESI-MS [M-H]- m/z, 533.1274 (calcd. for C₂₅H₂₆O₁₃, 533.1295); ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.69 (1H, dd, J = 8.5, 2.0 Hz, H-6'), 7.54 (1H, d, J = 2.0 Hz, H-2'), 7.13 (1H, d, J = 8.5 Hz, H-5'), 6.41 (1H, s, H-6), 6.13 (2H, s, -O-CH₂-O-), 5.11 (1H, d, J = 7.1 Hz, Glc-1), 3.90 (1H, m, Glc-6), 3.81 (3H, s, 5-OCH₃), 3.75 (3H, s, 8-OCH₃), 3.72 (3H, s, 3-OCH₃), 3.71 (1H, m, Glc-6), 3.46 (1H, m, Glc-5), 3.38 (1H, m, Glc-3), 3.35 (1H, m, Glc-4), 3.21 (1H, m, Glc-2); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 174.8 (C-4), 157.1 (C-5), 155.4 (C-7), 152.0 (C-2), 151.3 (C-3'), 149.2 (C-9), 147.5 (C-4'), 140.9 (C-3), 131.0 (C-8), 124.8 (C-1'), 119.0 (C-6'), 109.3 (C-5'), 109.0 (C-10), 108.1 (C-2'), 103.1 (-O-CH₂-O-), 99.5 (Glc-1), 94.2 (C-6), 77.0 (Glc-5), 76.3 (Glc-3), 73.1 (Glc-2), 69.6 (Glc-4), 61.2 (8-OCH₃), 60.7 (Glc-6), 59.7 (3-OCH₃), 56.4 (5-OCH₃); ESI-MS/MS data (Table-1).

7-Hydroxy-5,6,8-trimethoxy-3',4'-methylenedioxy flavone-7-O-β-glucopyranoside (2): Pale yellow needles; UV (MeOH) λ_{max} (log ϵ): 257, 350 nm. IR (KBr, ν_{max} , cm⁻¹): 3100 (OH), 1620 (C=O), 1605, 1590, 1495; ESI-MS [M-H]-m/z, 533; HR-ESI-MS [M-H]-m/z, 533.1275 (calcd. for C₂₅H₂₆O₁₃, 533.1295); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 7.69 (1H, dd, *J* = 8.8, 2.3 Hz, H-6'), 7.55 (1H, d, *J* = 2.3 Hz, H-2'), 7.14 (1H, d, J = 8.8 Hz, H-5'), 6.63 (1H, s, H-3), 6.11 (2H, s, -O-CH₂-O-), 5.08 (1H, d, J = 7.3 Hz, Glc-1), 3.92 (3H, s, 5-OCH₃), 3.90 (1H, m, Glc-6), 3.89 (3H, s, 8-OCH₃), 3.85 (3H, s, 6-OCH₃), 3.71 (1H, m, Glc-6), 3.46 (1H, m, Glc-5), 3.39 (1H, m, Glc-3), 3.35 (1H, m, Glc-4), 3.21 (1H, m, Glc-2); ¹³C NMR (DMSO-d₆, 100 MHz) δ 175.1 (C-4), 160.6 (C-2), 151.5 (C-3'), 150.3 (C-6), 149.1 (C-8), 147.8 (C-4'), 147.6 (C-9), 144.0 (C-5), 137.1 (C-7), 124.3 (C-1'), 119.3 (C-6'), 110.1 (C-5'), 109.5 (C-10), 109.0 (C-2'), 106.3 (C-3), 103.2 (-O-CH2-O-), 99.9 (Glc-1), 77.1 (Glc-5), 76.4 (Glc-3), 73.1 (Glc-2), 69.5 (Glc-4), 61.5 (5-OCH₃), 61.2 (6-OCH₃), 61.0 (8-OCH₃, Glc-6); ESI-MS/MS data (Table-1).

Patuletin-7-β-glucuronide (3): Pale yellow crystals; UV (MeOH) λ_{max} (log ϵ): 255, 267sh, 336 nm; IR (KBr, v_{max} , cm⁻¹): 3327, 1654, 1610, 1504, 1457, 881, 805; ESI-MS [M-H]m/z, 507; HR-ESI-MS [M-H]-m/z, 507.0760 (calcd. for C₂₂H₂₀O₁₄, 507.0775); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 12.31 (1H, s, 5-OH), 9.92 (1H, s, 3'-OH), 9.80 (1H, s, 3-OH), 9.40 (4'-OH), 7.67 (1H, d, *J* = 2.1 Hz, H-2'), 7.56 (1H, dd, *J* = 7.8, 2.1 Hz, H-6', 6.89 (1H, d, J = 7.8 Hz, H-5'), 6.51 (1H, s, H-8),5.17 (1H, d, J =7.4 Hz, GlcA-1), 4.15 (1H, d, J = 9.5 Hz, GlcA-5), 3.81 (3H, s, 6-OCH₃), 3.67 (1H, t, J = 9.5 Hz, GlcA-4), 3.59 (2H, m, GlcA-2, GlcA-3); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 176.3 (C-4), 169.9 (GlcA-6), 157.3 (C-7), 151.5 (C-9), 151.4 (C-5), 147.5 (C-4'), 146.5 (C-2), 145.3 (C-3'), 135.1 (C-3), 130.9 (C-6), 122.1 (C-1'), 119.8 (C-6'), 115.5 (C-5'), 114.7 (C-2'), 103.8 (C-10), 101.2 (GlcA-1), 94.5 (C-8), 75.8 (GlcA-5), 75.3 (GlcA-3), 72.8 (GlcA-2), 71.2 (GlcA-4), 59.9 (6-OCH₃); ESI-MS/MS data (Table-1).

Pinobankasin-6-C-glucopyranosyl-8-C-arabinopyranoside (4): Colourless needles; m.p.: 164- 166 °C; $[\alpha]^{25}_{D} =$ 10.1 (c 0.5, MeOH). UV (MeOH) λ_{max} (log ε): 380, 315 nm; IR (KBr, ν_{max}, cm⁻¹): 3460, 3120, 1650, 1620, 1480, 1285, 1178; ESI-MS [M-H]-*m*/*z*, 565; HR-ESI-MS [M-H]-*m*/*z*, 565.1563 (calcd. for C₂₆H₃₀O₁₄, 565.1558); ¹H NMR (CD₃OD, 400 MHz) δ 7.49 (2H, m, H-2', H-6'), 7.27 (1H, m, H-4'), 7.25 (2H, m, H-3', H-5'), 5.07 (1H, d, J = 12.8 Hz, H-3), 4.51 (1H, d, J = 12.8 Hz, H-2), 4.80 (1H, d, J = 9.6 Hz, Glc-1), 4.64 (1H, d, J = 9.0 Hz, Ara-1), 4.01 (1H, m, Ara-2), 3.93 (1H, m, Ara-5), 3.89 (1H, m, Glc-2), 3.88 (1H, m, Ara-4), 3.70 (1H, m, Glc-6), 3.69 (1H, m, Ara-5), 3.54 (1H, m, Glc-6), 3.53 (1H, m, Ara-3), 3.28 (3H, m, Glc-3, Glc-4, Glc-5); ¹³C NMR (CD₃OD, 100 MHz) δ 195.6 (C-4), 165.1 (C-7), 161.5 (C-5), 160.5 (C-9), 136.3 (C-1'), 129.2 (C-3', C-5'), 128.7 (C-2', C-6'), 127.5 (C-4'), 106.9 (C-6), 105.4 (C-8), 96.8 (C-10), 83.6 (C-2), 77.7 (Glc-3, Glc-5), 75.2 (Ara-3), 74.2 (Ara-1), 73.2 (Glc-1), 72.7 (C-3), 71.1 (Glc-4), 70.8 (Glc-2), 69.6 (Ara-5), 69.1 (Ara-2), 68.6 (Ara-4), 62.2 (Glc-6); ESI-MS/MS data (Table-1).

Chrysin 3-C-a-arabinopyranosyl-8-C-β-glucopyranoside (11): Pale yellow needles crystals; m.p.: 274-276 °C; UV (MeOH) λ_{max} (log ϵ): 269, 316 nm; IR (KBr, v_{max} , cm⁻¹): 3264 (-OH), 1650 (-C=O), 1595, 1342, 1216, 845; ESI-MS [M-H]m/z, 547; HR-ESI-MS [M-H]-m/z, 547.1435 (calcd. for C₂₆H₂₈O₁₃, 547.1452); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 12.90 (1H, s, 5-OH), 10.51 (1H, s, 7-OH), 8.13 (2H, m, H-2', H-6'), 7.70 (1H, m, H-4'), 7.66 (2H, m, H-3', H-5'), 6.27 (1H, s, H-6), 4.80 (1H, d, J = 9.4 Hz, Ara-1), 4.76 (1H, d, J = 9.8 Hz, Glc-1), 4.00 (2H, m, Glc-2, Ara-2), 3.79 (1H, m, Ara-5), 3.77 (1H, m, Ara-4), 3.74 (1H, m, Glc-6), 3.57 (1H, m, Ara-5), 3.52 (1H, m, Glc-6), 3.42 (1H, m, Ara-3), 3.36 (1H, m, Glc-4), 3.30 (1H, m, Glc-3), 3.27 (1H, m, Glc-5); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 178.3 (C-4), 161.0 (C-5, C-7), 160.1 (C-2), 154.3 (C-9), 131.9 (C-4'), 129.3 (C-1'), 128.7 (C-3', C-5'), 126.1 (C-2', C-6'), 101.3 (C-10), 115.3 (C-3), 105.1 (C-8), 95.8 (C-6), 81.5 (Glc-5), 79.1 (Glc-3), 74.6 (Ara-1), 74.5 (Glc-1), 73.9 (Ara-3), 71.5 (Glc-2), 70.8 (Glc-4), 70.1 (Ara-5), 68.9 (Ara-2), 68.4 (Ara-4), 60.9 (Glc-6); ESI-MS/MS data (Table-1).

6-Sulfooxy-chrysin-7-glucoside (12): Pale yellow needles crytals; UV λ_{max} (log ε): 267, 313nm; IR (KBr, v_{max} , cm⁻¹): 3348, 1655, 1617, 1510, 1068, 854, 768, 686; ESI-MS [M-H]-*m*/*z*, 511; HR-ESI-MS [M-H]-*m*/*z*, 511.0562 (calcd. for C₂₁H₂₀O₁₃S, 511.0547); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 12.63 (1H, s, 5-OH), 8.08 (2H, m, H-2', H-6'), 7.58 (3H, m, H-3', H-4', H-5'), 7.36 (1H, s, H-8), 7.11 (1H, s, H-3), 4.53 (1H, d, *J* = 6.8 Hz, Glc-1), 3.92 (1H, m, Glc-6), 3.71 (1H, m, Glc-6), 3.45 (1H, m, Glc-5), 3.37 (1H, m, Glc-3), 3.35 (1H, m, Glc-4), 3.20 (1H, m, Glc-2); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 182.6 (C-4), 166.5 (C-7), 164.5 (C-2), 164.2 (C-5), 153.2 (C-9), 132.5 (C-4'), 130.4 (C-1'), 129.3 (C-3', C-5'), 126.7 (C-2', C-6'), 105.7 (C-3, C-10), 101.3 (Glc-1), 94.7 (C-6), 94.4 (C-8), 77.0 (Glc-5), 76.2 (Glc-3), 73.5 (Glc-2), 70.0 (Glc-4), 61.0 (Glc-6); ESI-MS/MS data (Table-1).

5-Hydroxy-6,7,4'-trimethoxy flavanone 5-sulfate (24): Pale yellow crytals; m.p.: 164-166 °C; UV (MeOH) λ_{max} (log ε): 225, 287, 340nm; IR (KBr, v_{max} , cm⁻¹): 3400, 2905, 1630, 1565, 1510, 1445, 1270, 1250, 1190, 1155, 1105, 1005, 965, 890 and 830; ESI-MS [M-H]-*m/z*, 409; HR-ESI-MS [M-H]-*m/z*, 409.0590 (calcd. for C₁₈H₁₈O₉S, 409.0594); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 7.48 (2H, d, *J* = 8.8 Hz, H-2', H-6'), 6.95 (2H, d, *J* = 8.8 Hz, H-3', H-5'), 6.71 (1H, s, H-8), 5.57 (1H, dd, *J* = 8.8, 3.8 Hz, H-2), 3.85 (3H, s, 7-OCH₃), 3.80 (3H, s, 6-OCH₃), 3.78 (3H, s, 4'-OCH₃), 3.35 (1H, dd, *J* =

TABLE-1	
CHARACTERIZATION OF COMPOUNDS BY HPLC-ESI-MS/MS FROM S. baica	lensis

No.	Rt (min)	$UV \; \lambda_{max} \; (nm)$	ESI-MS/MS m/z (abundance)	Identification results
1	3.3	256,273,350	MS ² [533]: 516(1.2), 317(8.4), 353(27.3), 341(7.8), 329(0.6), 313(2.3)	7-Hydroxy-3,5,8-trimethoxy-3',4'-(methylene- dioxy) flavone-7-Q-β-glucopyranoside
2	3.4	258,350	MS ² [533]: 516(1.2), 317(8.4), 353(27.3), 341(7.8), 313(2.3)	7-Hydroxy-5,6,8-trimethoxy-3',4'-(methylene- dioxy) flavone-7-O-β-glucopyranoside
3	4.8	255,267,336	MS ² [507]: 491(26.5), 399(99.3), 331(31.1)	Patuletin-7-β-glucuronide
4	4.9	280,315	MS ² [565]: 547(100.0), 487(50.7), 457(75.9), 445 (43.9), 367(86.0), 337(51.5)	Pinobankasin-6-C-glucopyranosyl-8-C- arabinopyranoside
5	5.2	255,370	MS ² [657]: 495(100.0), 333(0.2)	6,8-Dihydroxy quercetin diglucopyranoside
6	5.5	282,330	MS ² [671]: 509(100.0), 389(4.4), 347(50.4), 228(1.4)	3,5,7,8,3',4'-Hexahydroxy-6-methoxy flavone diglucopyranoside
7	5.7	271,338	MS ² [563]: 443(100.0), 545(15.0), 503(27.0), 486 (14.6), 473(67.1), 383(33.9), 353(73.1)	Apigenin-6-C-β-D-glucoside-8-C-?-L-arabinoside
8	5.9	271,338	MS ² [563]: 443(100.0), 545(28.5), 503(44.4), 485 (15.6), 473(67.7), 425(26.3), 383 (38.7), 353(34.8)	Apigenin-6-C-α-L-arabinoside-8-C-β-D-glucoside
9	6.4	222,388	MS ² [577]: 457(100.0), 559(8.2), 517(1.3), 487(45.4), 367(21.1), 337(39.8)	Chrysin-6,8-C-diglucoside
10	6.7	224,272,316	MS ² [547]: 487(100.0), 529(14.5), 457(79.3), 427 (79.3), 367(41.0), 337(85.9)	Chrysin-6-C-α-L-arabinoside-8-C-β-D-glucoside
11	7.1	269,316	MS ² [547]: 457(100.0), 529(22.4), 487(55.3), 427 (58.9), 367(48.2), 337(50.3)	Chrysin-3-C-α-arabinopyranosyl-8-C-β- glucopyranoside
12	8.6	267,313	MS ² [511]: 431(100.0), 349(10.6), 269(3.2), 241(1.2)	6-Sulfooxy-chrysin 7-glucoside
13	10.1	220,274,316	MS ² [547]: 457(100.0), 529(10.4), 487(38.1), 427 (22.6), 367(34.6)	Chrysin-6-C- β -D-glucoside-8-C- α L-arabinoside
14	10.6	279,317	$MS^{2}[511]: 269(100.0), 431(20.5), 351(4.2), 349(3.1), 241(8.6)$	Bicalein-7-O- β -D-glucopyranosyl sulfate conjugate
15	11.6	252,347	$MS^{2}[475]: 299(100.0), 300(26.2), 284(5.4), 175(3.7)$	Chrysoeriol-7-O-β-D-glucuronide
16	13.6	276,315	$MS^{2}[431]: 269(100.0), 271(3.3), 270(16.5), 201(1.2), 196(1.0)$	Baicalein-7-O-β-D-glucopyranoside
17	14.0	272,316	$MS^{2}[445]: 430(100.0), 283(87.6), 268(82.4), 161 (1.2)$	Wogonin-5-O-β-D-glucopyranoside
18	14.7	270,313	MS ² [415]: 295(100.0), 325(17.2), 296(14.2), 267 (3.2)	Chrysin-8-C-β-D-glucopyranoside
19	16.4	276,315	MS ² [445]: 269(100.0), 366(2.5), 341(2.2), 270(19.5), 223(3.3), 175(20.7)	Baicalein-7-O-glucuronide (baicalin)
20	16.6	263, 323	MS ² [475]: 299(100.0), 301(3.2), 300(19.4), 285(2.2), 284(37.1), 175(5.2)	5,7,6'-trihydroxy-2'-methoxy flavone-7-O-β-D- glucuronide
21	17.4	282,333	MS ² [445]: 269(100.0), 427(2.0), 385(1.0), 175(14.9), 137(2.9)	Apigenin-7-O-β-D-glucuronopyranoside (scutellarin A)
22	17.7	268,336	MS ² [445]: 269(100.0), 244(35.0), 216(1.4), 175(2.6)	2'-Hydroxychrysin-7-glucuronide
23	18.1	254,346	MS ² [463]: 161(100.0), 301(68.4), 283(3.4), 191(8.1), 162(12.7), 139(5.5)	Quercetin-7-O-β-D-glucopyranoside (quercimeritrin)
24	18.4	287,340	MS ² [409]: 329(100.0), 315(0.2), 314(0.9), 299(0.2)	5-Hydroxy-6,7,4'-trimethoxy flavanone-5-sulfate
25	18.9	272,312	MS ² [459]: 283(100.0), 268(8.6), 175(20.7)	Oroxylin A-7-O-β-D-glucuronide
26	19.3	274,349(sh)	MS ² [459]: 283(100.0), 269(5.0), 268(4.2), 176(1.3), 175(24.5)	Wogonin-7-O-β-D-glucuronopyranoside
27 28	21.5 23.1	276,320 288	MS ² [349]: 269(100.0), 332(0.1), 270(23.0), 225(0.3) MS ² [303]: 125(100.0), 285(3.1), 275(9.0), 259(8.7),	Baicalein-7-O-sulfate 3,5,7,3',4'-pentahydroxy flavanone (taxifolin)
20	24.4	224 287	217(23.3), 177(30.9) MS ² [202]: 125(100.0), 285(6.1), 250(15.6), 177(12.0)	(2P 2P) 2 5 7 2' 6' pontahydroxy flavanona
29 30	24.4 26.4	290,330	$MS^{2}[303]: 125(100.0), 285(4.4), 275(10.2), 259(6.1), 217(12.9)$ $MS^{2}[303]: 125(100.0), 285(4.4), 275(10.2), 259(6.1), 217(13.8), 177(27.6)$	3,5,7,2',6'-Pentahydroxy flavanone
31	27.6	254,351	MS ² [301]: 161(100.0), 283(4.8), 273(3.8), 270(1.2), 139(44.0)	3,5,7,3',4'-Pentahydroxy flavone (quercetin)
32	28.1	253,302	MS ² [301]: 161(100.0), 283(7.5), 273(17.9), 269 (18.2), 139(86.4), 133(15.3)	5,7,2',6'-Tetrahydroxy flavonol (visciclulin I)
33	31.1	267,342	MS ² [345]: 330(100.0), 331(17.5), 329(4.9), 328(1.4), 315(5.1)	5,7,2',5'-Tetrahydroxy-8,6'-dimethoxy flavone (viscidulin III)
34	31.5	261,310	MS ² [285]: 125(100.0), 269(5.6), 241(1.0), 177(1.0), 161(28.7), 151(2.6),	5,7,2',6'-Tetrahydroxy flavone
35	34.2	275,340	$MS^{2}[393]: 313(100.0), 331(0.9), 314(8.1), 298(0.7)$	5,2'-Dihydroxy-7,8-dimethoxy flavone (panicolin)
36	35.2	272,313	MS ² [283]: 269(100.0), 175(4.1)	5,7-Dihydroxy-6-methoxy flavone (oroxylin A)
37 38	36.3 36.8	262,346 241,253,349	MS ² [285]: 241(11.0), 237(7.6), 227(9.9), 151(10.0) MS ² [285]: 241(6.8), 233(5.8), 231(2.4), 201(6.7), 199(1.2), 155(4.0), 151(12.7)	3,5,7,4'-Tetrahydroxy flavone (kaempferol) 5,7,3',4'-Tetrahydroxy flavone (luteolin)
39	37.9	222,278,304	$MS^{2}[285]: 267(10.0), 243(2.5), 223(3.5), 218(4.1), 201(9.1), 153(5.3), 133(9.1)$	5,7,8,4'-tetrahydroxy flavone (isoscutellarein)
40	48 5	276 320	$MS^{2}[285]: 268(18.5), 241(7.2), 213(18.7), 205(3.4), 149(1.3)$	5.6.7.4'-Tetrahydroxy flavone (scutellarein)
41	49.6	260(sh),274,362	$MS^{2}[331]: 331(100.0), 300(1.2), 273(10.7), 157(1.8)$	5.7.3'.4'.5'-Pentahydroxy-3.6.8-trimethoxy flavone
42	50.4	274	$MS^{2}[283]: 268(100.0), 283(4.2), 269(16.2), 137(5.4)$	5,7-Dihydroxy-8-methoxy flavone (wogonin)
43	51.0	230,253,311(sh)	MS ² [253]: 181(100.0), 208(9.4), 164(20.9), 125 (47.7)	7,4'-Dihydroxy flavone
44	51.1	268,315	MS ² [253]: 153(100.0), 186(4.5), 171(3.9), 145(13.7)	5,7-Dihydroxy flavone (chrysin)
45	51.2	269,324	MS ² [283]: 267(100.0), 136(1.8)	5,7-Dihydroxy-4'-methoxy flavone (acacetin)

Fig. 2. Structures of the new components in the extract of S. baicalensis

12.0, 8.8 Hz, H-3), 2.81 (1H, dd, J = 12.0, 3.8 Hz, H-3); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 197.5 (C-4), 159.7 (C-4'), 158.6 (C-7), 155.7 (C-5), 153.5 (C-9), 133.6 (C-6), 130.3 (C-1'), 128.4 (C-2', C-6'), 113.8 (C-3', C-5'), 106.2 (C-10), 90.5 (C-8), 78.9 (C-2), 59.9 (7-OCH₃), 58.2 (6-OCH₃), 55.1 (4'-OCH₃), 42.7 (C-3); ESI-MS/MS data (Table-1).

Supporting information: NMR spectra (¹H NMR, ¹³C NMR, HMQC and HMBC), HR-ESI-MS of all new compounds and detailed extrction and isolation procedures are given as supporting information.

RESULTS AND DISCUSSION

Systematic phytochemical investigations were carried out to probe the chemical profile of the *S. baicalensis*, the successive purification of the EtOH extract of *S. baicalensis* by medium-pressure ODS column chromatography. Seven new and 38 known compounds were isolated and purified through medium-pressure ODS column, as well as repeated preparative using semi-preparative HPLC.

Compound 1, obtained as pale yellow needles crystals. The molecular formula of 1 was determined to be $C_{25}H_{26}O_{13}$ on the basis of negative ion ESI-MS, ¹H and ¹³C NMR spectral data. In the UV spectrum of 1, the maximum bands are at 256, 273 and 350 nm. Its IR spectrum showed absorption bands due to hydroxy (3100 cm⁻¹), carbonyl (1620 cm⁻¹), aromatic $(1605, 1590, 1495 \text{ cm}^{-1})$ groups. In the ¹H NMR spectrum (Table-1), three singlets (3H, each) were observed at $\delta_{\rm H} = 3.72$, 3.75 and 3.81, indicating three methoxyl groups. The ¹³C NMR signals of 1 were assigned with the help of an HMQC experiment, establishing direct C-H bonding. The location of the three methoxyl groups were assigned to C-3, C-5 and C-8 based on the observed HMBC correlations from 3-OCH₃ (δ 3.72), 5-OCH₃ (δ 3.81) and 8-OCH₃ (δ 3.75) to C-3 (δ 140.9), C-5 (δ 157.1) and C-8 (δ 131.0), respectively. This experiment also clarified the site of glycosidation showing a long-range correlation between the anomeric proton of glucose at $\delta_{\rm H}$ 5.11 (d, J = 7.7 Hz, H-1") and the oxygenated carbon atom at $\delta_{\rm C}$ 155.4 (C-7). The ¹H and ¹³C data of the aglycone were similar to those reported for 7-hydroxy-3,5,8-trimethoxy-3',4'-methylenedioxyflavone⁴. Finally, the structure of 1 was established as 7-hydroxy-3,5,8-trimethoxy-3',4'-methylenedioxy flavone-7-O-β-glucopyranoside.

Compound **2**, obtained as pale yellow needles with the molecular formula $C_{25}H_{26}O_{13}$ (negative ion ESI-MS, ¹H and ¹³C NMR spectral data). The ¹H and ¹³C NMR spectra of **2** were similar to those of **1**, which are different with site of methoxyl linkage. Comparison with the spectrum of compound **1** allowed an upfield shift for C-3 signal and a downfield shift for the C-6 signal, furthermore, signals of methoxyl groups could be assigned to C-6. The structure of aglycone was identified by comparison of its MS and ¹H and ¹³C NMR data with those reported in the literature⁵. Based on these findings, the chemical structure of **2** has been elucidated to be 7-hydroxy-5,6,8-trimethoxy-3',4'-methylenedioxy flavone-7-O- β -glucopyranoside.

Compound **3**, the ¹³C NMR spectrum of **3** displayed the presence of one glucuronide unit in addition to 16 carbon signals for the aglycone. The chemical shifts of the aglycone carbons were similar to those reported for patuletin⁶. In the HMBC spectrum, long-rang correlations were observed from δ 5.17 (H-1 of GlcA) to δ 157.3 (C-7 of the aglycone). Accordingly, the structure of 3 was formulated as patuletin 7- β -glucuronide.

Compound **4** is optically active, $[\alpha]^{25}_{D} = 10.1$ (c 0.5, MeOH) and its molecular formula was established as $C_{26}H_{30}O_{14}$ by high resolution ESIMS. Additionally, two anomeric proton resonances were observed at δ 4.64 (d, J = 9.0 Hz) and 4.80 (d, J = 9.6 Hz), indicating its diglycosidic structure. The sugar functionality was identified as a β-glucopyranose and arabinopyranoside by ¹H and ¹³C NMR spectral data together with ESI-MS. The ¹³C NMR spectrum of 4 exhibited 26 carbon resonances: 8 quaternary carbons (C), 16 methine (CH) and 2 methylene (CH₂). In the HMBC spectrum, the proton signal at $\delta 4.51(d, J = 12.8Hz, H-2)$ showed long-range correlations with the carbon signals at δ 160.5 (C-9), whereas the anomeric proton (δ 4.64) showed long-range correlation with C-8 (δ 105.4) and C-9 (δ 160.5), indicating that the arabinose moiety was located at C-8. In the HMBC spectrum, the longrang correlation between the anomeric proton and C-3" (δ 77.7) of the glucose moiety, correlation to C-5 (δ 161.5)/C-6 (δ 106.9)/C-7 (δ 165.1), confirmed the attachment of glucose moiety to the carbon C-6. The structures of aglycone were identified by comparison of its MS and ¹H and ¹³C NMR data with those reported in the literature⁷. Therefore, the structure

of **4** can be identified as pinobankasin-6-C-glucopyranosyl-8-C-arabinopyranoside.

Compound **11**, the ¹H and ¹³C NMR spectral data together with ESI-MS supported the presence of diglycosidic. The structure of the sugar moieties could be entirely established on the basis of ¹H and ¹³C NMR data. In HMBC, the anomeric proton (δ 4.64) showed long-range correlation with C-8 (δ 105.1), C-9 (δ 154.3) and C-3" (δ 79.1) indicating that the glucose moiety was located at C-8. Moreover, this experiment also clarified the site of glycosidation showing a long-range correlation between the anomeric proton of arabinose at $\delta_{\rm H}$ 4.80 (d, J = 9.4 Hz) and the carbon atom at $\delta_{\rm C}$ 178.3 (C-4). Thus, compound **11** was identified as chrysin 3-C- α -arabinopyranosyl-8-C- β -glucopyranoside by comparing its ¹H and ¹³C NMR data with previously published data⁸.

Compound **12**, obtained as a yellow amorphous powder. The molecular formula was determined to be $C_{21}H_{20}O_13S$ on the basis of negative ion ESI-MS, ¹H and ¹³C NMR spectral data. The UV spectrum exhibited maxima at 267 and 313 nm and IR spectrum suggested the presence of hydroxy groups (3348 cm⁻¹). The ¹H and ¹³C data of the aglycone were similar to those reported for chrysin. The significant shifts of the carbon signals of the *ipso*, *ortho* and *para* positions caused by the sulphation at C-6 are consistent with literature data for flavonoid sulphates⁹. The β -glucopyranosyl unit is linked to C-7 of the aglycone from the chemical shift of this carbon at δ 166.5. Therefore, the structures of compound **12**, 6-sulfoxychrysin-7-glucoside, were identified on the basis of comparison of its spectroscopic (NMR, MS) data in comparison with literature values¹⁰.

Compound 24 was isolated as an pale yellow crystal. The molecular formula was established as C₁₈H₁₈O₉S by ESI-MS, ¹H and ¹³C NMR spectral data. The IR spectrum showed absorption bands at 1630 (C=O), 1445 (aromatic), 1270 (-C-O-) and the UV spectrum exhibited maxima at 225, 287 and 340 nm. The signal at δ 6.71 related to two methylene protons showed long-range correlations with the signals for C-7, C-9, C-6 and C-10, whereas the methoxy protons at δ 3.80 and δ 3.85 showed long-range correlation with C-5 and C-6, repectively. Additional, the signal at $\delta_{\rm H}$ 3.78 showed long-range correlations with the signals for C-3', C-5' and 4'-OCH₃ in the B ring. The significant shifts of the carbon signals of the *ipso*, ortho and para positions caused by the sulphation at C-5. Therefore, indicating the sulphation at C-5. Based on these findings, compound 25 were identified by comparing their physical and spectral data with the literature values: 5-hydroxy-6,7,4'- trimethoxy flavanone 5-sulfate¹¹.

By comparing their physical and spectroscopic data with published data, the structures of the other 38 known chemical constituents were elucidated as 6,8-dihydroxy quercetin diglucopyranoside ($\mathbf{5}$)¹², 3,5,7,8,3',4'-hexahydroxy-6-methoxy flavone diglucopyranoside ($\mathbf{6}$)¹³, apigenin-6-C- β -D-glucoside-8-C- α -L-arabinoside ($\mathbf{7}$)¹⁴, apigenin-6-C- α -L-arabinoside-8-C- β -D-glucoside ($\mathbf{8}$)¹⁴, chrysin-6,8-C-diglucoside ($\mathbf{9}$)¹⁵, chrysin-6-C- α -L-arabinoside-8-C- β -D-glucoside ($\mathbf{10}$)¹⁶, chrysin-6-C- β -D-glucoside-8-C- α -L-arabinoside ($\mathbf{13}$)¹⁶, baicalein-7-O- β -D-glucopyranosyl sulfate conjugate ($\mathbf{14}$)¹⁷, chrysoeriol-7-O- β -D-glucuronide ($\mathbf{15}$)¹⁸, baicalein-7-O- β -D-

glucopyranoside (16)¹⁷, wogonin-5-O- β -D-glucopyranoside $(17)^{19}$, chrysin-8-C- β -D-glucopyranoside $(18)^{20}$, baicalein-7-O-glucuronide (baicalin) (19)²¹, 5,7,6'-trihydroxy-2'-methoxy flavone-7-O- β -D-glucuronide (20)²², apigenin7-O- β -Dglucuronopyranoside (scutellarin A) (21)²³, 2'-hydroxychrysin-7-glucuronide (22)²⁴, quercetin-7-O- β -D-glucopyranoside (quercimeritrin) (23)²⁵, oroxylin A-7-O- β -D-glucuronide (25)²⁶, wogonin-7-O-β-D-glucuronopyranoside (26), baicalein-7-O-sulfate (27)²⁷, 3,5,7,3',4'-pentahydroxy flavanone (taxifolin) (28)²⁸, (2R, 3R)-3,5,7,2',6'-pentahydroxy flavanone (29)²⁹, 3,5,7,2',6'-pentahydroxy flavanone (30)³⁰, 3,5,7,3',4'-pentahydroxy flavone (quercetin) (31), 5,7,2',6'-tetrahydroxy flavonol (visciclulin I) (32)³¹, 5,7,2',5'-tetrahydroxy-8,6'dimethoxy flavone (viscidulin III) (33)³², 5,7,2',6'-tetrahydroxy flavone (34)³³, 5,2'-dihydroxy-7,8-dimethoxy flavone (panicolin) (35)³⁴, 5,7-dihydroxy-6-methoxy flavone (oroxylin A) $(36)^{35}$, 3,5,7,4'-tetrahydroxy flavone (kaempferol) $(37)^{36}$, 5,7,3',4'-tetrahydroxy flavone (luteolin) (**38**)³⁷, 5,7,8,4'tetrahydroxy flavone (isoscutellarein) (39)³⁸, 5,6,7,4'tetrahydroxy flavone (scutellarein) $(40)^{36}$, 5,7,3',4',5'pentahydroxy-3,6,8-trimethoxy flavone (41)³⁹, 5,7-dihydroxy-8-methoxy flavone (wogonin) (42)⁴⁰, 7,4'-dihydroxy flavone $(43)^{41}$, 5,7-dihydroxy flavone (chrysin) $(44)^{42}$, 5,7-dihydroxy-4'-methoxy flavone (acacetin) $(45)^{43}$.

ACKNOWLEDGEMENTS

The authors thank the National Science and Technology Major Project Key New Drug Creation and Manufacturing Program, China (No. 2009ZX09301-001, 2009ZX09308-005) and the National Natural Science Foundation of China (No. 81030065) for financial support of this work.

REFERENCES

- National Commission of Chinese Pharmacopoeia, Pharmacopoeia of the People's Republic of China. China Medical Technology Press, Beiing (2010).
- 2. Jiangsu New Medical College, Dictionary of Chinese Materia Medical, Science and Technology Press of ShangHai (1977).
- H.Z. Wen, S.Y. Xiao, Y.M. Wang and G.A. Luo, *Nat. Prod. Res. Dev.*, 6, 575 (2004).
- G. Corinne, M. Frederic, B. Francoise, T. Francois, V. Jacqueline, S. Thierry and L. Marc, J. Nat. Prod., 62, 1188 (1999).
- W.L. Yang, H.F. Chen, B.J. Yu, P.Z. Zhang, Z.H. Yan, L. Jie and H. Xu, *Zhong Yao Cai*, **31**, 1812 (2008).
- H. Tokunaru, S. Kenichi, Y. Kazuyo, K. Yasuhiko and T. Masao, *Chem. Pharm. Bull.*, 45, 446 (1997).
- K. Masanori, Y. Yooko, F. Seigo, U. Akira, N. Tadataka and M. Toshio, *Chem. Pharm. Bull.*, 30, 1602 (1982).
- D.W. Aksnes, A. Standnes and O.M. Anderson, *Magn. Reson. Chem.*, 34, 820 (1996).
- H.J. Xia, F. Qiu, S. Zhu, T.Y. Zhang, G.X. Qu and X.S. Yao, *Biol. Pharm. Bull.*, **30**, 1308 (2007).
- E.A. Ali, M. Ibtissam, T. Rachida Chendid, B. Mohamed, E.A. Rachid, E.B. Brahim and L. Mohammed, *Molecules*, 9, 568 (2004).
- E. Wollenweber, V.H. Dietz, D. Schillo and G. Schilling, Zeitsch. Naturforschung, C: J. Biosci., 35, 685 (1980).
- D.K. Bhardwaj and R.M. Jain, *Proc. Indian Nat. Sci. Acad.*, 49, 408 (1983).
 L.C. Dos Santos, C.M. Rodrigues, M.A. Silva, R.G. Coelho, M.
- Sannomiya and W. Vilegas, *Biochem. System. Ecol.*, 33, 1159 (2005).
 C. Xie, N.C. Veitch, P.J. Houghton and S.J. Simmonds, *Chem. Pharm. Bull.*, 51, 1204 (2003).
- L. Gobbo-Neto, M.D. Santos, A. Kanashiro, M.C. Almeida, Y.M. Lucisano-Valim, L.C. Lopes, E.P. Souza and N.P. Lopes, *Planta Medica*, 71, 3 (2005).

- 16. S. Takagi, M. Yamaki and K. Inoue, Yakugaku Zasshi, 101, 899 (1981).
- Y. Yuan, W.L. Hou, M.H. Tang, H.D. Luo, L.J. Chen, Y.H. Guan and L.A. Sutherland, *Chromatographia*, 68, 885 (2008).
- G. Romussi, N. Fontana and N.D. Tommasi, *Phytother. Res.*, 10, S84 (1996).
- Y.Y. Zhang, Y.Z. Guo, H. Ageta, Y. Harigaya, M. Onda, K. Hashimoto, Y. Ikeya, M. Okada and M. Maruno, J. Chin. Pharm. Sci., 6, 182 (1997).
- 20. Z.H. Zhou and C.R. Yang, Yunnan Zhiwu Yanjiu, 22, 475 (2000).
- T. Tomimori, Y. Miyaichi, Y. Imoto, H. Kizu and Y. Tanabe, *Yakugaku Zasshi*, 103, 607 (1983).
- J. Han, M. Ye, M. Xu, J.H. Sun, B.R. Wang and D. Guo, *J. Chromatogr. B*, 848, 355 (2007).
- T. Hase, K. Ohtani, R. Kasai, K. Yamasaki and C. Picheansoonthon, *Phytochemistry*, 40, 287 (1995).
- Y.Q. Wang, K. Matsuzaki, K. Takahashi, T. Okuyama and S. Shibata, *Chem. Pharmaceut. Bull.*, 36, 3206 (1988).
- 25. R. Kunde and O. Isaac, Planta Medica, 37, 124 (1979).
- 26. K. Abe, O. Inoue and E. Yumioka, Chem. Pharm. Bull., 38, 208 (1990).
- W.H. Huang, A.R. Lee and C.H. Yang, *Biosci. Biotechnol. Biochem.*, 70, 2371 (2006).
- 28. W.L. Mei, W. Ni, Y. Hua and C.X. Chen, *Nat. Prod. Res. Dev.*, **14**, 26 (2002).
- 29. Y.Y. Zhang and Y.Z. Guo, Shenyang Yaoxueyuan Xuebao, 8, 137 (1991).
- 30. S. Takagi, M. Yamaki and K. Inoue, Phytochemistry, 20, 2443 (1981).

- 31. H.Y. Wang, L.H. Xiao, L. Liu and S.X. Xu, *Shenyang Yaoke Daxue Xuebao*, **20**, 339, 348 (2003).
- M.L. Liu, M.L. Li, X.T. Liang, X.Y. Lin, Q.T. Zheng, S.D. Zhang and F.L. Shen, *Zhongcaoyao*, **17**, 438 (1986).
- T. Tomimori, Y. Miyaichi and H. Kizu, Yakugaku Zasshi, 102, 388 (1982).
- 34. M. Inuma, S. Matsuura and K. Kusuda, *Chem. Pharm. Bull.*, **28**, 708 (1980).
- R.R. Biekofsky, C.A. Buschi and A.B. Pomilio, *Magn Reson. Chem.*, 29, 569 (1991).
- L.H. Qin, X.Y. Guo, M. Fan, A.S. Din, N.L. Wang and X.S. Yao, Shenyang Yaoke Daxue Xuebao, 23, 633 (2006).
- 37. J.Y. Peng, G.R. Fan and Y.T. Wu, *China J .Chin. Mater. Medica*, **31**, 128 (2006).
- W.H. Huang, Y.B. Li and J.Q. Jiang, *Zhongguo Zhongyao Zazhi*, 34, 712 (2009).
- 39. S.G. Yu, N.B. Fang and T.J. Mabry, Phytochemistry, 27, 171 (1988).
- X. Li, J.H. Wang, X. Li and D.L. Liang, *Shenyang Yaoke Daxue Xuebao*, 19, 178 (2002).
- 41. C.N. He, W.W. Gao, W.Y. Xu and J.M. Tong, *Zhong Cao Yao*, **39**, 1783 (2008).
- 42. Z.T. Ma and X.W. Yang, Zhongguo Zhongyao Zazhi, 33, 2080 (2008).
- 43. N.Y. Yang, J.H. Duang, P. Li, S.H. Qian and W.C. Hu, *Zhongguo Tianran* Yaowu, **4**, 98 (2006).