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INTRODUCTION

Maintaining the best quality is essential for the survival
of a tobacco factory in a globally competitive world. Ciga-
rette is a complex mixture of components responsible for aroma
and flavour and fixed compounds consisting of a large variety
of substance with different characteristics. It is exactly the
special composition that make cigarette of a brand unique
among those of other brands'. The major risk for both buyers
and sellers is that the product will not meet specifications and
expectations when delivered. Thus, the purpose of quality
control is to ensure consistency of product quality and to
distinguish cigarettes of different brands. Even with extensive
automation, it is still a very difficult task due to the multi-
component nature. So, even today, cigarettes of different brands
are mostly distinguished by human sensory responses, which
are time-consuming, laborious and may also be susceptible to
subjective factors and so there is an urgent need to develop
alternative methods that are faster and more objective.

Generally, an ideal method used for brand classification
of cigarettes should not contain a process of sample pretreat-
ment, but can accomplish a fast data acquisition and treatment
with relatively low cost®. Nowadays, near-infrared spectro-
metry has become an effective alternative to wet chemical
methods in various fields such as food*”, pharmaceutical®®,
medical®"" and petrochemical'*'* industries, because it enable
rapid and nondestructive analysis with little or no sample prepa-
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ration. In applications related to near-infrared spectroscopy, a
key step is to develop a prediction model by chemometrics,
which allow the analytical information to be extracted from
near-infrared spectra®. Over the past decade, chemometricians
have developed many valuable algorithms intended for near-
infrared applications, in which support vector machine (SVM)
is an outstanding representative'®'*, The standard support vector
machine are originally designed for binary classification problem.
How to effectively extend it for multi-class classification is
still an on-going research issue. Currently, there are two types
of approaches for multi-class support vector machine. One is
by constructing and combining several binary classifiers such
as one-against-one support vector machine and one-against-
all support vector machine, while the other is by directly consi-
dering all classes in one single optimization formulation.
Vojtech Franc has proposed to modify slightly the original
optimization formulation by adding a bias term to its objective
function and to transform the modified problem to a single-
class problem, which is simpler than its original formulation'.
This is so-called BSVM, which is especially appropriate for
on-line applications where the simplicity is of great impor-
tance. Besides, it has been recognized that one of the very
challenging works for spectroscopists is to select the most
appropriate algorithm for a given task since the superiority of
one algorithm over another for a task can not be generalized
to another task™.
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In the present work, the combination of on-line near-
infrared spectroscopy with chemometrics method (three kinds
of multi-class support vector machine, namely, BSVM, one-
against-one support vector machine and one-against-all
support vector machine was explored for monitoring the
quality of tobacco product. The influence of the training set
size on the performance was also investigated. A total of 165
samples from a cigarette factory were used for simulation. To
compare different algorithms, three performance criteria based
on the correctly classified rate were defined. The results
revealed that as a whole, BSVM shows the best performance,
especially in situations where the training set is comparatively
small, while one-against-one support vector machine and one-
against-all support vector machine make no difference. Also,
BSVM bears least computational cost since it can often build
a classifier with less support vectors by only solving a single
optimization. It seems that that BSVM could be a powerful
tool for quality control based on high-dimensional spectral
information.

EXPERIMENTAL

Support vector machine: Support vector machine®' >,

well researched in statistical learning theory, have been actively
investigated in pattern classification and regression. Support
vector machine map an input sample/pattern to a high dimen-
sional feature space and try to find an optimal hyperplane that
minimizes the recognition error for the training data using a
special non-linear transformation function.

The standard support vector machine is designed for
binary classification. The multi-class support vector machine
is still an ongoing research issue. The existing methods can
roughly be divided between two different approaches i.e., the
single machine approach, which attempts to train a multi-class
support vector machine by solving a single optimization prob-
lem and the divide and conquer approach, which decomposes
the multi-class problem into several binary sub-problems and
builds a standard support vector machine for each. The most
popular decomposing strategy is the one-against-all, which
consists of building one support vector machine per class,
trained to distinguish the samples in a single class from the
samples in all remaining classes. Another popular strategy is
the one-against-one, which builds one support vector machine
for each pair of classes; i.e., for the k-class problem, a total of
k(k-1)/2 binary support vector machine are first trained and
then, a fusion method such as majority voting is used to combine
the multiple support vector machine outputs. In this study,
both one-against-one and one-against-all approaches are used
and termed as one-against-all support vector machine and one-
against-one support vector machine, respectively.

BSVM belongs to so-called single machine approach,
which deals with a multi-class classification by solving only
an optimization problem. Detailed information can be found
in the literature™.

Sample set partitioning: For a given data set, in general,
the selection of a representative training set upon which training
the classifiers is performed is of great importance further, a
test set is necessary in order to evaluate the performance of
such classifiers. Strictly speaking, the evaluation is valid only

if the test set has the same distribution as the training set. For
this purpose, the classical Kennard-Stone (KS) algorithm*,
which sequentially selects a sample to maximize the minimal
Euclidean distances between already selected samples and the
remaining samples, is first used to rank all samples of each
class, afterwards, an alternate re-sampling is applied to select
one sample of every three samples in order to constitute the
test set, the remaining samples constitute the training set. As a
result, the training set and the test set have about two-third
and one-third of samples, respectively, i.e., a 2/1 division of
training/test samples.

Performance criteria: In order to verify and compare
different classifiers, three criteria based on the correctly
classified rate were adopted. The correctly classified rate (CCR)
was defined as follows:

K
Z correctly classified samples in class i
CCR == @))
total number of samples
where k is the total number of class. Because modeling was
repeated m times for each training set size, a criterion average
correctly classified rate" is defined as follows:

| @
Average CCR - ; CCR, )
To measure the stability of classifiers, another two criteria,
i.e., 95 percentile of correctly classified rate and standard
deviation of correctly classified rate are used. Actually, the
average correctly classified rate describes the average
behaviour of an algorithm, while 95 percentile of correctly
classified rate describes the extremely bad behaviour of an
algorithm with 5 % chance. For example, if 95 percentile
correctly classified rate is 98 %, it means that the algorithm
has a chance of 95 % to produce a classifier with as large as
98 % correctly classified rate. The standard deviation of correctly
classified rate is the standard deviation of correctly classified
rate, which can indicate the diversity of an algorithm, i.e., the
influence of the training set on the correctly classified rate.
Sampling and spectra collection: All samples were taken
from a cigarette factory in west China. The near-infrared spec-
trum was on-line recorded in the diffuse reflectance model
using the Matrix-E system (Matrix-E, Bruker, German), which
was suspended exactly over the conveyer belt where shredded
tobacco was passing. The sampling module contains 4 near-
infrared light sources to illuminate the sample. Light from the
sources is focused on to the conveyor belt through a window.
The distance from the window to the conveyor belt is about
20 cm and the measured spot size is approximately 2.5 cm in
diameter. Each final near-infrared spectrum is the average
spectrum of 64 scans over the range 12000-4000 cm™', with a
resolution of 8 cm™. A total of 165 spectra corresponding to
three brands were obtained, among which 38, 103 and 24 spectra
belonged to Jiaozi (A), Wuniu (B) and Xiongshi (C), respec-
tively. In order to perform the later classification calculation,
each spectrum was assigned a label from 1 to 3 according to
its brand. Each spectrum combined with its label represents a
sample.
Software and calculations: The Matrix-E system was
controlled by Bruker Optics OPUS software package. All



3670 Tan et al.

Asian J. Chem.

calculations were performed in Matlab 7.0 and Windows Xp,
based on Pentium IV with 256 RAM. All the support vector
machine algorithms were implemented on the Statistical
Pattern recognition toolbox (http://cmp.felk.cvut.cz/cmp/soft-
ware).

RESULTS AND DISCUSSION

Preliminary analysis and data preparation: To provide
an overview of the data distribution, principal component
analysis is employed. Fig. 1 gives the score plots of the first
three/two PCs extracted by principal component analysis. As
it can be seen that in both PC1-PC2 and PC1-PC2-PC3 plots,
even if the near-infrared spectra seem to contain some valuable
information for distinguishing different brands of cigarettes,
they still shows considerably overlapped. Thus, the classifica-
tion task is somewhat difficult and there is a need to seek an
appropriate algorithm for building a powerful classifier.

PC3

Fig. 1. Score plots of the first three/two components extracted by principal
component analysis

With the sample set partitioning scheme described above,
a total of 165 samples were first broken into a training set and
a test set. Due to the similar information distribution existed
in both the training set and the test set, it is reasonable and
reliable to use only the test set for validation purpose. The
training set contains 110 samples with 25, 69 and 16 samples
belonging to A, B and C, respectively, while the test set contains
55 samples with 13, 34 and 8 samples belonging to A, B and
C, respectively. As acquiring a sample is expensive, it is profi-
table to probe into the influence of the training set size on the
performance of each algorithm so as to find the smallest training
set size that can produce a satisfactory classifier. To achieve
this, the original training set were further divided into a series
of training subsets with increasing sizes at an increment of 5
(for simplicity, also called training set instead of training sub-
set). Fig. 2 depicts the composition of samples corresponding
to different training set size and the ellipse designates the case
that the training set size equals the test set size (i.e. the most
similar composition). Compared to the fixed test set, clearly,
some of the training sets are larger while the others are smaller,

which make it possible to analyze the effect of the training set
size. It must be mentioned that, for each training set size,
random sampling was carried out 100 times to create 100
training sets, on which 100 classifiers were built to compute
the three performance criteria, i.e., average correctly classified
rate, 95 percentile of correctly classified rate and standard
deviation of correctly classified rate.
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Fig. 2. Composition of samples corresponding to different training set size
(the ellipse designates the case that the training set size equals to
the test set size

Comparison of the three multi-class support vector
machine: For a fair comparison, three multi-class support
vector machine, i.e., BSVM, one-against-all support vector
machine and one-against-one support vector machine, used
the same RFB kernel function, with the kernel parameter
being optimized in the range of [0.1 0.2, 0.4, 0.8, 1.6, 3.2],
while, the regularization constant C was fixed at 10 since it
often has relatively small influence on the classifiers.

With the increase of the training set size, Figs. 3-5 give
the comparison of the values of average correctly classified
rate, 95 percentile of correctly classified rate and standard
deviation of correctly classified rate of different classifiers
based on 100 runs/classifiers, respectively. As shown in Fig.
3, when the training set size is smaller than 55 (i.e. equals the
test set size), the Average correctly classified rate curve
related to each of the five types of classifiers climbs fast. Once
the training set size is larger than 55, all the curves become
relatively flat, suggesting that the average correctly classified
rate can only be improved slightly by increasing training
samples. It seems to be difficult to construct an acceptable
classifier on a training set with too small size. Basically, the
curve corresponding to BSVM is above the curves correspon-
ding to one-against-one support vector machine, one-against-
all support vector machine, which means that in almost all
cases, BSVM classifiers perform best. For a given training set
size, BSVM can always build a classifier with higher accuracy.
In other words, to build a classifier with expected accuracy,
BSVM need the minimum number of training samples and
therefore can save the cost of collecting samples. It can also
be seen in Fig. 3 that, once the training set size is larger
95, each of the three support vector machine classifiers can
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achieve an average correctly classified rate value of 100 %.
Besides, one-against-one support vector machine and
one-against-all support vector machine make no significant
difference.
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Fig. 3. Comparison of the Average CCR values of different classifiers with

the changes of the training set size based on 100 runs
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Fig. 4. Comparison of the 95 percentile of CCR values of different classifiers
with the changes of the training set size based on 100 runs
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In Fig. 4, as a whole, all curves present as the similar
trends as shown in Fig. 3. Herein, it can be noted that the
performance of BSVM classifiers can always be improved
steadily while each of other kinds of classifiers appears a few
unusual instances. For example, the one-against-all support
vector machine classifier on 65 samples, the one-against-one
support vector machine classifier on 80 samples achieve a local
minimum of 95 percentile of correctly classified rate, indicating
that increasing training samples can not guarantee stable perfor-
mance improvement. Therefore, it can be concluded that
BSVM is the most robust algorithm. In practice, since one has
to take the cost of collecting samples into account, the combi-
nation of average of correctly classified rate and 95 percentile
of correctly classified rate provide some information on how
to make a trade-off between average accuracy and robustness.
It is clear in Fig. 5 that the standard deviation of correctly
classified rate curve corresponding to BSVM is at the bottom,
indicating that the diversity of BSVM algorithm, i.e., the
influence of the training set composition on the correctly
classified rate, is least and thereby confirming the robustness
of BSVM from another perspective. Fig. 6 depicts the mean
and standard deviation of support vectors for three kinds of
support vector machine classifiers trained on different training
set sizes. As shown in Fig. 6, on the average, with the increase
of training set size, the ratio of support vectors in the training
set declines gradually and the standard deviation of support
vectors rises instead, indicating that when the training set
become larger, support vector machine has more choices of
utilizing different subsets to construct classifiers with similar
performance. For a fixed training set size, BSVM classifier
often contains least support vectors. Also, it is based on solving
a single optimization problem in modeling. Thus, compared
to one-against-one support vector machine and one-against-
all support vector machine, BSVM bears less computational
burden in both constructing and applying a classifier.
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Comparison of the standard deviation of CCR values of different
classifiers with the changes of the training set size based on 100
runs
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Fig. 6. Mean and standard deviation (SD) of the support vectors (SVs) for
three kinds of SVM classifiers trained on different training set sizes
Conclusion

The assessment of cigarette authenticity is important and
need fast classification technique. This study explored the
feasibility of on-line near-infrared spectroscopy combined with
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three kinds of multi-class support vector machine algorithms
for discriminating cigarettes of different brands. The influence
of the training set size on the performance of each algorithm
was also explored. In comparison to one-against-one support
vector machine and one-against-all support vector machine,
BSVM shows the best overall performance in almost all cases,
suggesting that the combination of on-line near-infrared
spectroscopy and BSVM can serve as a promising tool of discri-
minating cigarettes of different brands in the process quality
control of tobacco industry. These properties, together with a
clear theoretical background, make BSVM a good candidate
to be applied to quality control systems using spectral data
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